A monopolar vortex encounters a north-south ridge or trough

J.H.G.M. van Geffen and P.A. Davies
Fluid Dynamics Research 26 157--179 (2000)

abstract

Results are described from a two-dimensional numerical model in which a cyclonic monopole that moves due to the beta-effect encounters a north-south oriented ridge or trough, the height and depth of which is varied. The fate of the monopole depends on its initial north-south position y0 (or, equivalently, the value of the constant f0 in the Coriolis parameter): the monopole can be rebounded, destroyed or trapped by the topography. Only for a narrow range of y0-positions, depending on the height (depth) of the ridge (trough), can the monopole actually cross the topography, sometimes after being heavily deformed. It is the gradient of the topography-induced vorticity that determines the fate of the monopole and this topography-induced vorticity is larger for initial positions more to the north or south and for higher ridges and deeper troughs.


contents

   1. Introduction
   2. The numerical model
      2.1 The governing equations
      2.2 Numerical method
      2.3 The computations
   3. Motion of a monopole on a beta-plane
   4. The monopole encounters a north-south ridge
      4.1 A ridge with height A=0.20
          ===>  Web page
      4.2 Ridges with other heights
   5. The monopole encounters a north-south trough
   6. Concluding remarks
      Acknowledgments
      References

Full paper (2.7B)


<=== main publication list
<=== list of papers for which 'nsevol' is used

 
Jos van Geffen -- Home  |  Site Map  |  Contact Me

last modified: 19 July 2016