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A monopolar vortex encounters a north–south ridge or trough
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Abstract

Results are described from a two-dimensional numerical model in which a cyclonic monopole that moves due to the
�-e�ect encounters a north–south oriented ridge or trough, the height and depth of which is varied. The fate of the monopole
depends on its initial north–south position y0 (or, equivalently, the value of the constant f0 in the Coriolis parameter): the
monopole can be rebounded, destroyed or trapped by the topography. Only for a narrow range of y0-positions, depending
on the height (depth) of the ridge (trough), can the monopole actually cross the topography, sometimes after being heavily
deformed. It is the gradient of the topography-induced vorticity, which deforms the background potential vorticity �eld due
to the �-e�ect, that determines the fate of the monopole. This topography-induced vorticity is larger for initial positions
more to the north or south, and for higher ridges and deeper troughs. c© 2000 The Japan Society of Fluid Mechanics
and Elsevier Science B.V. All rights reserved.

PACS: 47.32.Cc; 47.11.+j

Keywords: Vortex dynamics; Computational methods in 
uid dynamics

1. Introduction

Field observations (see e.g. Richardson 1993a,b; Bower et al., 1995; Kamenkovich et al., 1996;
Bograd et al., 1997) have shown the widespread existence of several kinds of oceanic vortices, such
as, for example, Meddies, Gulf Stream eddies and anticyclones, and Agulhas eddies. These vortices
are relatively abundant; Richardson (1993b) estimates that there are roughly 1000 discrete eddies in
the North Atlantic. Many are created in frontal regions and they are thought to play an important role
in the horizontal transport of quantities such as heat, momentum, salt and pollutants. The vortices
move due to a combination of the latitudinal (y) variation of the Coriolis parameter f (the so-called
�-e�ect) and the general background oceanic 
ow. As such vortices move, they inevitably interact
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with submarine topographic features, and these interactions are known to in
uence the trajectories
of the vortices (with the possibility that the vortex may be destroyed by the topographic encounter).
Van Ge�en and Davies (1999) — hereafter named VGD — employed a simple one-layer two-

dimensional (shallow water) model to study the basic features of vortex–topography interactions.
They considered a cyclonic monopolar vortex encountering a smooth ridge with variable height,
width and orientation on a pure �-plane (i.e. with Coriolis parameter f = �y) and showed, for
example, that a north–south oriented ridge has a much larger impact on the monopole’s evolution
than an east–west oriented counterpart, under otherwise-identical conditions. VGD showed that the
in
uence of the north–south ridge depends on the width and height of the ridge and reported that
whereas the monopole can cross a low ridge with some disturbance to its trajectory, su�ciently high
ridges cause topography-induced 
ow deformations that can lead to the disintegration of the vortex.
For cases of �nite height topography where the monopole crosses the north–south ridge after

signi�cant topographic interaction, VGD concluded that such behaviour is determined crucially by
whether the vortex has gathered su�cient positive potential vorticity on its (north)west side by
moving north along the ascending (east) side of the ridge. A question that then naturally arises is
whether the initial position of the monopole in the north–south direction (the y-coordinate) in
uences
the monopole’s evolution. The study described in the present paper investigates this point, for cases
in which the width and orientation of the ridge are kept �xed but the height is varied; cases of
negative heights (i.e. troughs) are included in this study. The other point left open by VGD is the
in
uence of a non-zero f0 on the evolution of the monopole, where f0 is the constant part of the
Coriolis parameter: f=f0 +�y. The present study shows that varying the initial y-position at f0 =0
is dynamically equivalent to varying f0 at constant initial y-position.
Several workers have investigated theoretically the motion of vortices on a �-plane. Of particular

relevance here is the analytical study of Llewellyn-Smith (1997) on the evolution of non-isolated
vortices (the monopole used in the present paper is non-isolated) on a �-plane. Similar related
studies have been performed by e.g. Sutyrin and Flierl (1994), Reznik and Dewar (1994) and
Korotaev and Fedotov (1994). One of the results of these studies is that the di�erence in magni-
tude of the vorticity gradient across the vortex and the background vorticity gradient due to the
�-e�ect determine the trajectory of the vortex. It is possible that these analytical approaches could
be extended to incorporate the combined e�ect of a bottom topography and the disturbance in the
overall background vorticity due to the �-e�ect, though such an analytical treatment falls outside
the scope of the present paper. Instead, the attention is focussed here on the results of numerical
experiments of a set of interaction processes and the classi�cation of the possible outcome of these
interactions.
The remainder of this paper is organised as follows. The numerical model is outlined in Section 2

and the motion of a monopole on a �-plane without topography is brie
y addressed in Section 3.
Sections 4 and 5 present the results of simulations in which the monopole encounters a north–south
ridge and trough, respectively, and some concluding remarks are formulated in Section 6.

2. The numerical model

This section describes in brief the numerical method (see VGD for details) and introduces the
monopole and topography used in the simulations.
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2.1. The governing equations

In a Cartesian (x; y; z) frame with unit vectors (i; j; k), assuming that vertical motions induced by
a topography are much smaller than the horizontal motions (w�u; v, with C = (u; v; w) the relative
velocity of the 
ow), conservation of mass for an incompressible 
uid is given by

3 · C=− 1
H
(C ·3)H; (1)

where H (x; y) is the 
uid depth. It is convenient to introduce a potential streamfunction  p, de�ned
as {

Hu= @ p=@y
Hv=−@ p=@x

or HC=3 × k p =3 p × k: (2)

With this de�nition, which satis�es Eq. (1), the two-dimensional (2D) Navier–Stokes equation in
the vorticity–streamfunction formulation reads

@!
@t
+ J (! p;  p) = �32!; (3)

where � is the kinematic viscosity, J the Jacobian operator (describing the non-linear advection
e�ects), and ! the relative vorticity. The potential vorticity !p is de�ned by

!p =
!+ f

H
; (4)

where f is the Coriolis parameter, describing the latitudinal variation of the vertical component of
the Earth’s angular velocity 
s. Expanding f around a reference latitude �0 for a sphere of radius
Rs leads to (e.g. Van Heijst, 1994)

f = f0 + �y + O(y2); (5)

in the so-called �-plane approximation used in this paper. In Eq. (5), the local north coordinate is
y and

f0 = 2
s sin�0; � = 2
s cos�0=Rs: (6)

If Eq. (3) is made dimensionless using a typical length scale L0 and a typical time scale T0, the
familiar Reynolds number Re appears as

Re =
L20=T0
�

=
�0
�
; (7)

where �0 is a typical scale for the circulation of the vorticity distribution. In what follows, all typical
scales are, by choice, set equal to unity, so that the Reynolds number, in e�ect, is Re= 1=�, and all
quantities are given in dimensionless units (see VGD). This implies that a vortex with a translation
velocity of 2, say, travels 2 length units in 1 time unit. The default 
uid depth, away from any
topography, is H = 1.
The relation between vorticity and streamfunction is given by what can be denoted the modi�ed

Poisson equation:

H!=−32 p +
1
H
(3H ·3 p); (8)
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which reduces to the regular Poisson equation ! = −32 for a uniform 
uid depth (with  the
regular streamfunction).
Eqs. (3) and (8) form the set of equations solved by the numerical method for given H=H (x; y); f0

and �, starting from an initial vorticity distribution !(x; y; t = 0).

2.2. The numerical method

The numerical method used is a �nite di�erence method that solves Eqs. (3) and (8) on a
rectangular grid in a rectangular domain in the x; y-plane. The time evolution in Eq. (3) is computed
with an explicit third-order Runge–Kutta scheme, the viscous term �32! with a Crank–Nicolson
scheme and the non-linear term J (!p;  p) with the Arakawa scheme. The use of the Arakawa scheme
(Arakawa, 1966) guarantees, on the one hand, that in the inviscid case energy, enstrophy and skew
symmetry are conserved, and, on the other hand, that the computation has a high degree of stability.
Eq. (8) is solved with a multigrid method by a routine from the NAG Library, which limits the
number of grid cells to 2n (n= 1; 2; 3; : : :) in either direction.
The possible e�ects of the boundaries of the domain are minimised by using a free-slip condition

on the boundaries (which means that the boundary is a streamline along which the 
uid can 
ow
freely) and by using a domain that is much larger (see below) than the diameter of the monopolar
vortex used for the interaction studies.

2.3. The computations

For the study of the interaction of a monopole with a topographic ridge, a Bessel monopole is
used. This is a monopolar vortex of Bessel type with a vorticity distribution given by

!=




(kR)�
2�R2J1(kR)

J0(kr); r6R;

0 r¿R;
(9)

where r is the radial distance to the centre of the vortex, R its radius, and � its strength or circulation.
J0 and J1 are Bessel functions of the �rst kind and kR ≈ 2:4048 is the �rst non-zero root of J0.
The maximum of vorticity is located at the centre of the monopole, where J0 equals unity. (The
vortex given by Eq. (9) is an exact, stationary solution of the inviscid vorticity equation without
topography and a background rotation independent of location – i.e. Eq. (3) with �= 0; H = 1 and
f = constant – in an in�nite domain, satisfying the linear relationship != k2 .)
This monopole moves through the domain as a result of the �-e�ect (see Section 3) and encounters

a smooth, cosine-shaped ridge along the y-axis, such that the 
uid depth is given by

H =
{
1− A cos(x�)− A; −1¡x¡+ 1;
1; elsewhere; (10)

with the maximum height of the ridge (at x = 0) being 2A and the width at its foot being 2. The
height of the ridge is varied, where negative A-values obviously give a trough rather than a ridge.
Since the motions are assumed to be 2D, the absolute value of A cannot be too large.
The Bessel monopole is initialised with � = +4 and R = 0:5. This monopole is thus cyclonic

(anti-cyclonic) on the northern (southern) hemisphere, and it moves to the northwest (see
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Fig. 1. Sketch of the initial situation with a cyclonic Bessel monopole (�=4; R=0:5) at (x0 =3; y0) and the cosine-shaped
ridge along the y-axis (shaded region), given by Eq. (10).

Section 3). The monopole’s initial location is (x0 = +3; y0), where y0 is varied for f0 = 0 and
ascribing the value y0 =−3 for non-zero f0. If y0 is varied, the computational domain moves also
in the y-direction to minimise the boundary e�ects, as sketched in Fig. 1. The position y0 =−3 is
chosen as default value because if the monopole starts from (+3;−3) and travels to the northwest,
it passes the line y = 0 (the reference latitude of the Coriolis parameter, where f = f0) at about
x = 0 if there is no topography. Thus, y0 =−3 may be regarded as a symmetry case for assessing
topographic modi�cations to the 
ow. Note that from Eqs. (5) and (6) it follows that if f0 = 0 the
equator is the line y = 0.
Initially, a passive tracer is placed at the centre of the monopole, the location of the maximum

!max of vorticity. If the monopole moves on a pure �-plane this tracer stays at !max and the tracer
can be used to track the vortex. Any interaction with the topography, however, can deform the
monopole so much that !max moves away from the tracer. Likewise, if the deformation is very
strong (or the vortex has decayed due to viscous e�ects), then !max may be located near one of the
boundaries or at the topography, even if there still is a vortex to be seen. The location and value of
!max are only determined at grid points — whereas a tracer can move between grid points — and
a plot of !max necessarily shows steps from grid point to grid point. This obscures the e�ects being
studied and, therefore, a running average over 20 time steps is used in graphs (like Fig. 4) of !max.
The computational domain measures 20× 20 length units and is divided in 256 × 256 grid cells

(generally only a part of this domain is shown in the graphs). The in
uence of the size of the
domain on the vortex’ evolution has been subject to a previous sensitivity analysis (see VGD) and
a 20 × 20 domain has been shown to be su�ciently large to neglect boundary e�ects. The values
�t=0:05, �=0:3 and Re=1000 are taken for all simulations presented here. All runs end at T=50,
unless the fate of the monopole is still uncertain, in which case the run is continued until T = 75
or 100.
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3. Motion of a monopole on a � -plane

A monopolar vortex like the Bessel monopole (9) has a net angular momentum, so it rotates
about its centre. It has no net linear momentum, so it does not move in an in�nite domain. If
placed in a �nite domain with free-slip boundaries, however, the monopole moves along a closed
trajectory around the centre of the domain, since it “feels” its images in the boundaries, as shown by
Van Ge�en et al. (1996); the further away the monopole is from the boundary, the slower it moves.
On a �-plane the situation is essentially di�erent. As the monopole rotates, 
uid parcels are

advected around it and conservation of potential vorticity (assuming for a moment that the 
uid is
inviscid) leads to the creation of relative vorticity. The result is that the monopole will move, to
the northwest (southwest) for a cyclonic (anti-cyclonic) monopole on the northern hemisphere (see
e.g. Van Heijst, 1994; Reznik and Dewar, 1994; Llewellyn-Smith, 1997). The monopole does not
move along a straight path: as it moves, it leaves vorticity behind in the form of Rossby waves
and the monopole interacts subsequently with this vorticity. This secondary �-induced vorticity �eld,
by some authors named beta-gyres, has a dipolar-like 
uid motion and forces the vortex to move
along the dipole axis. This axis rotates because of the pattern in the vortex circulation and this leads
to rather complex trajectories with bends and kinks (see, for instance, the dotted curve in Fig. 9).
The �-induced motion is much stronger than the motion induced by the boundaries in the 20 × 20
domain, as shown by VGD.
For the motion of the monopole on the �-plane without topography, the value of the constant f0

in the Coriolis parameter is unimportant, as can be seen from Eq. (3): the Coriolis parameter f only
appears in the derivatives of the Jacobian operator. Similarly, it does not matter from what initial
y-position (y0) the monopole starts, since f = �y at another y0 simply means that a constant is
added to f. If the 
uid depth H is a function of the position, however, the values of both f0 and
y0 in
uence the evolution of the monopole, as shown below.

4. The monopole encounters a north–south ridge

In the simulations described by VGD for a cyclonic monopole encountering a ridge along the
y-axis [given by Eq. (10)] as it moves to the northwest, the monopole starts from the initial
y-position y0=−3, and the constant part of the Coriolis force is f0=0. As summarised in the Intro-
duction, the ability of monopole to cross the ridge is controlled signi�cantly by the amount of positive
potential vorticity acquired at its (north)west side, for non-trivial cases of �nite-height topography.
This can be seen in Fig. 2, which shows a time sequence of contours of potential vorticity !p for a

ridge with A=0:20. The monopole reaches the foot of the ridge at about T=15 and ascends the ridge
somewhat. It then travels north along the ridge, i.e. to the region of positive potential vorticity in the
undisturbed 
ow (cf. Fig. 11). At about T =25 the vortex has only positive potential vorticity at its
northwest side and the maximum of vorticity crosses the top of the ridge. The deformations in the
shape of the monopole caused by this ridge are relatively large and the vortex is seen to disintegrate
subsequently into two pieces. The front part, containing the maximum of vorticity, becomes a more
or less circular monopole that descends and eventually leaves the ridge. The trailing part decays due
to viscous e�ects before it can leave the ridge. After about T = 22, because of the deformations of
the monopole, the tracer is no longer located at the maximum of vorticity: the tracer moves across
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Fig. 2. Contours of potential vorticity on the x,y-plane of a Bessel monopole, initially at (3;−3), encountering a ridge
given by Eq. (10) with A=0:20 (shaded region) and f0=0. Contours are drawn at intervals of 0.2 in the range [−2:0; 2:0];
positive contours are solid, negative dashed, and the zero contour is dotted. At T =0 the zero contour coincides with the
equator; since f0 = 0 this is at y = 0. Note that in this and following plots only the central part of the computational
domain is shown.

the top of the ridge at T =25 and stays in the front part of the vortex, where it circles around !max

as the vortex travels on.
The point to address is the possible in
uence of another initial y-position y0 at f0 = 0, and of

a non-zero f0 at y0 = −3 on the monopole’s evolution. These two cases are equivalent, as can be
seen by equating their Coriolis parameters:

f0 + �y0 = f∗
0 + �y∗

0 ; (11)
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where the terms on the left represent the case of variable y0 and the terms on the right the case of
non-zero f0. Hence in Eq. (11): f0 = 0 and y∗

0 =−3, so that
f∗
0 = �(3 + y0); (12)

which has been con�rmed numerically. This implies that both cases can be inter-changed at will,
where Eq. (12) gives their relationship, with �=0:3 for the simulations presented in this paper. The
value of y0 is changed in steps of 2, which is thus equivalent to f∗

0 being changed in steps of 0:6.

4.1. A ridge with height A= 0:20

The top-left panel in Fig. 2 shows that the contours of potential vorticity !p of the �-e�ect (�y)
are parallel to the x-axis. These contours are deformed above the topography: they are squeezed
towards the equator, which has !p=0 (dotted line; since f0=0 the equator is at y=0). For y0=−3
(or equivalently f∗

0 =0) the monopole crosses the ridge, despite some deformation, as shown in Fig.
2 and discussed above. Placing the monopole initially more to the north — equivalent to giving f∗

0

a positive value — brings the monopole closer to, and �nally into the region with only positive !p.
For y0 =−3 it is found by VGD that the maximum of vorticity !max is able to cross the top of a

�nite-height ridge only after the monopole has gathered su�cient positive !p at its northwest side.
In the present study, for y0 =−1 (or f∗

0 = 0:6) this is also the case, as the monopole starts (as for
y0 =−3) in a region of negative !p. For this case, however, the deformation of the monopole is so
strong that at T =41 the tracer is no longer at !max; in fact, !max is no longer located at the centre
of the vortex.
More dramatic is the case with y0 = +1 (or f∗

0 = 1:2), for which Fig. 3 shows a time sequence
of contours of !p and for which the monopole starts o� completely surrounded by positive !p. The
potential vorticity �eld in this case causes the tracer to clearly separate from !max around T = 22,
though by only a relatively small amount, as can be seen in Fig. 4. The deformation continues and
after about T = 40 the tracer is really away from !max: the vortex is fully disintegrated.
For y0 = +1, the case discussed above, the monopole is obviously destroyed by the topographic

interaction. For the y0 = −1 counterpart case discussed earlier, the fate of the vortex is less clear,
since at T = 50 there still is a vortex visible. Fig. 5 shows contours of !p of this case, with the
position of the tracers being marked by a white circle: the tracer remains at the centre of the decaying
vortex. The maximum of vorticity, however, is after T=41 located outside the vortex (see the �gure
caption), indicating that the monopole is trapped on the ridge and decays there due to viscous e�ects.
For initial positions more northerly than y0 =+1, the deformation of the monopole is qualitatively

similar to the case y0 = +1: the computations show that the tracer is away from !max at about
T =22–24 and after about T =40 a vortex is no longer visible. In these cases !max is often located
near one of the boundaries or somewhere on the ridge, but not at the position of the tracer.
Conversely, placing the monopole initially further to the south than y0 =−3 (equivalent to giving

f∗
0 a negative value) means that the vortex is initially surrounded by progressively stronger negative
values of !p. In these cases, crossing the ridge is more and more inhibited by the ridge-induced
vorticity. For example, the model results show that for y0 = −5 (or f∗

0 = −0:6) this tendency is
strengthened, relative to the y0 =−3 case (Fig. 2). As the monopole approaches and encounters the
ridge, negative vorticity is generated to the south of the vortex. The combination of this advected
topography-induced vorticity and the monopole generates a dipolar-like structure which then tends
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Fig. 3. Contours of potential vorticity on the x,y-plane of a Bessel monopole, initially at (3;+1), encountering a ridge
given by Eq. (10) with A = 0:20 (shaded region) and f0 = 0. Contours as in Fig. 2 in the range [ − 1:0; 4:0]. A small
white circle (0.25 length units in diameter) shows in the last three panels the position of the tracer, which is at the ridge
then; cf. Fig. 4.

initially to move away from the ridge. This dipolar structure is, however, relatively weak and the
monopole component is soon free again to — with some delay — actually start climbing the ridge.
At T = 50 the maximum of vorticity has still not crossed the summit, obstructed as it is by the
negative vorticity above the ridge, northwest of the vortex. Continuing the computation beyond
T = 50 shows that !max does leave the ridge eventually after crossing the summit at about T = 60
and having undergone strong deformations but no disintegration. The vortex then descends from the
ridge and travels to the northwest again.
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Fig. 4. The x- and y-position of the maximum of vorticity (solid line) and the tracer (dashed line) as function of time of
the monopole of Fig. 3.

Fig. 5. Contours of potential vorticity on the x; y-plane of a Bessel monopole, initially at (3;−1), encountering a ridge
given by Eq. (10) with A = 0:20 (shaded region) and f0 = 0. Contours as in Fig. 2 in the range [ − 1:0; 4:0]. A small
white circle (0.25 length units in diameter) shows the position of the tracer, which is at the ridge. At the times shown,
the maximum of vorticity is located at the tracer, at (−0:9; 8:6) and at (0:9; 9:2), respectively.

With the monopole initially located further to the south, for example, for y0 =−7 the process is
initially the same as described above for y0 = −5, but the e�ect of the ridge-induced vorticity is
stronger than in the latter case: the dipolar-like structure formed by the negative vorticity generated
at the ridge and the monopole is more coherent and clearly moves away from the ridge. The result
is that the monopole rebounds from the ridge, without !max having reached the foot of the ridge.
Fig. 6 shows a time sequence of contours of !p for this case and Fig. 7 shows the monopole’s
trajectory: the tracer remains at !max fairly well during the rebound. For even lower values of y0
the monopole also rebounds from the ridge; the position of !max does not approach closer to the
ridge than x ≈ 1:7 and the tracer follows !max well.
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Fig. 6. Contours of potential vorticity on the x; y-plane of a Bessel monopole, initially at (3;−7), encountering a ridge
given by Eq. (10) with A= 0:20 (shaded region) and f0 = 0. Contours as in Fig. 2 in the range [− 4:0; 1:0].

Fig. 7. Trajectory of the maximum of vorticity (solid line) and the tracer (dashed line) of the monopole of Fig. 6. Black
dots mark the position of the tracer at intervals of �T = 5.
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Obviously, when the rebounded monopole has shed some of the negative vorticity with which it
formed a dipolar-like structure (which prevented the monopole from reaching the ridge in the �rst
attempt), the monopole will again move to the northwest due to the �-e�ect. For the case shown in
Figs. 6 and 7, for example, this is going to happen after T =50, when the dipolar-like structure has
disintegrated (last panel in Fig. 6). In consequence, the monopole will encounter the ridge again, but
somewhat further to the north than initially. In this circumstance, the monopole has by then become
weaker and larger in lateral size due to viscous e�ects, so it is not clear whether the monopole
will be able to cross the ridge in the subsequent encounter. (This point has not been addressed any
further, as the �rst encounter with the ridge is the subject of the present study.)
In summary, the fate of the monopole due to the interaction with the ridge in question can be

classi�ed arbitrarily in four categories:

• ‘d’ for destroyed: the ridge deforms the monopole so much that the vortex is fully disintegrated;
• ‘t’ for trapped: the monopole stays on (or very close to) the ridge and decays due to viscous
e�ects;

• ‘c’ for crossed: the monopole manages to cross the ridge, maintaining its integrity, though with
the possible loss of a part of the vortex;

• ‘r’ for rebounded: the topography prevents the monopole from crossing the ridge on �rst encounter.
Table 1 gives the fate of the monopole for varying y0 (or, equivalently, for varying f∗

0 ) for the ridge
with A=0:20 discussed above. The time Tf listed marks the time at which !max moves away from the
tracer. If that does not happen before the run ends, the end-time of the run is given between brackets.

4.2. Ridges with other heights

Table 1 summarises the corresponding interaction results for all ridges investigated in the present
study, including three cases for which the value of A is lower than the A = 0:20 value described

Table 1
The fate of a Bessel monopole encountering a north–south ridge along the y-axis, given by Eq. (10), starting from (3; y0)
at f0 =0 (in which case the equator is at y=0). The second column gives the equivalent f∗

0 value according to Eq. (12),
where the monopole is initially at (3;−3). For a description of the classi�cation of the monopole’s fate and the meaning
of Tf, see the end of Section 4.1

A= 0:20 A= 0:15 A= 0:10 A= 0:05
y0 f∗

0 Fate Tf Fate Tf Fate Tf Fate Tf

+7 3.0 d 23.8 d 22.7 d 53.1 d 59.3
+5 2.4 d 22.4 d 30.7 d 60.5 t 58.5
+3 1.8 d 23.2 d 43.9 t 72.3 t 59.0
+1 1.2 d 22.3 d 58.8 d 54.2 c 62.0
−1 0.6 d=t 40.9 d 53.0 c 58.1 c (50)
−3 0.0 c (50) c (50) c (50) c (50)
−5 −0:6 c (75) c (50) c (50) c (50)
−7 −1:2 r (50) r (50) c (50) c (50)
−9 −1:8 r (50) r (50) t 70.9 c (50)
−11 −2:4 r (50) r (50) r (50) c (75)
−13 −3:0 r (50) r (50) r (50) t 69.3
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in the previous section. [Values larger than A = 0:20 are not acceptable within the assumption of
2D motions made in the model (Section 2).] The main conclusion, not surprisingly, is that a lower
height has a less dramatic e�ect on the monopole’s evolution (under otherwise-identical conditions),
though it is noted that such e�ects of varying the ridge height are not linear. Likewise, the form of
the interaction is controlled strongly by the value of y0, i.e. by the form of the undisturbed potential
vorticity �eld associated with the ridge.
With regard to the outcome of the interaction, it is noted that for su�ciently high values of ridge

height A, the e�ects of further increases in A are weak. For example, a ridge with A= 0:20 exerts
essentially the same qualitative e�ects upon the monopole as the ridge with A=0:15, for both positive
and negative values of y0. In the latter regard, note that for y06 − 7, for example, the ‘r’ 
ow
type classi�cation for the two A-values look alike, except for some di�erences in the trajectories
associated with the precise nature of the interaction between the monopole and the ridge-induced
vorticity: there is a clear rebound of the monopole against the foot of the ridge in both A-values.
Even for the cases y0 =−3 and −5, where the monopole crosses the ridge, the e�ects of increasing
the value of A from 0:15 to 0:20 are not signi�cant for either the general deformation of the vortex
or the fate of the tracer (which remains on !max for all times shown). For all positive values of y0,
the only e�ect of increasing the ridge height from 0.15 to 0.20 is a somewhat stronger monopole
deformation (though with ultimate disintegration (‘d’) in both cases) and a correspondingly shorter
survival time with the latter topography.
As the value of A is reduced further below A=0:15, the e�ects of changing ridge height become

more pronounced, both qualitatively and quantitatively. For example, for y0=−9, reducing the value
of A from 0:15 to 0:10 and �nally to 0:05 results in a transition of respective 
ow types from a
rebounded monopole to a trapped monopole and �nally to a crossing of the ridge by the monopole.
For the lowest ridge case studied (A=0:05), no rebound of the incident monopole is observed within
the full y0-range (+7→ −13) investigated.
A similar dependence upon the value of A is illustrated in the time sequence of !p for a ridge

of height A = 0:10 shown in Fig. 8 and the associated plot of the monopole trajectory in Fig. 9.
For this case, the value of y0 is −7, as in the counterpart sequence for A=0:20 in the earlier Figs.
6 and 7. Comparisons between Figs. 6 and 8 show that the reduction in ridge height alone has
resulted in a change in 
ow type, with the lower ridge allowing passage over the topography by
the monopole. Such a di�erence in 
ow behaviour between the two ridge heights is shown dramat-
ically in the di�erences in the respective trajectory plots of Figs. 7 and 9. In addition, however, to
these (not-unexpected) quantitative di�erences between topographies having di�erent ridge heights,
a crucial revelation of Fig. 8 alone is that (contrary to the �ndings of VGD for f0 = 0) the incident
monopole is able to cross the ridge even if it does not have positive potential vorticity !p at its
northwest side.
Thus, the present study, in which f0 is essentially varied, evidently shows that the existence

of a zone of positive potential vorticity to the northwest of the distorted vortex is neither nec-
essary nor su�cient to determine whether the vortex can cross the ridge. Rather, it is the form
of the undisturbed potential vorticity contours associated with the ridge (see later) that exerts
the crucial in
uence upon the monopole’s motion across the ridge. For low ridges, the deforma-
tion of the pure �-plane vorticity contours is relatively weak, leading to a weaker ridge-induced
deformation opposing the crossing of the ridge by the monopole. This property can be seen
clearly (Table 1) from the results of the computations for A = 0:05 (the lowest ridge
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Fig. 8. Contours of potential vorticity on the x; y-plane of a Bessel monopole, initially at (3;−7), encountering a ridge
given by Eq. (10) with A= 0:10 (shaded region) and f0 = 0. Contours as in Fig. 2 in the range [− 4:0; 1:0].

Fig. 9. Trajectory of the maximum of vorticity (solid line) and the tracer (dashed line) of the monopole of Fig. 8. Black
dots mark the position of the tracer at intervals of �T = 5. The dotted line shows the monopole’s path in the absence of
a topography. Thick vertical lines in this and following plots indicate the edges of the ridge.
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Fig. 10. Trajectory of the maximum of vorticity (solid line; until T = 59) and the tracer (dashed line) of a monopole,
initially at (3; 3), encountering a ridge given by Eq. (10) with A= 0:05 and f0 = 0. Black dots mark the position of the
tracer at intervals of �T = 10. The dotted line shows the monopole’s path in the absence of a topography.

considered): the monopole can cross such a ridge for all f∗
0 ¡ 0 cases, except for the lowest y0-

position.
For non-negative values of f∗

0 , interactions of the monopole with the lowest ridge (A=0:05) can
result in the decay of the monopole at the ridge rather than disintegration. When the maximum of
vorticity is no longer at the location of the tracer (i.e. for T ¿Tf), there is still a vortex to be seen.
Fig. 10 illustrates the trajectory of such cases; for this example (f∗

0 = +1:8) the tracer is near the
summit of the ridge until about T = 70, after which it descends to the western side and after about
T =80 remains near the location x=−1:5; y=11. The maximum of vorticity, meanwhile, is located
near the southwestern corner of the domain after T = 59.
The case study examples presented above expose the limitations of interpreting the crossing of a

given ridge solely in terms of the existence of positive potential vorticity to the northwest of the
advecting monopole. Rather, they point to the importance in this regard of the undisturbed form of
the potential vorticity contours associated with the topographic feature. For a given value of A, such
contours are of course of di�erent form for di�erent values of y0. Most signi�cantly, the contours
are also of di�erent form for positive and negative topographies (ridges and troughs, respectively)
of otherwise-identical amplitude |A|, suggesting that the motion of the monopole will be sensitive
to the sign of the topography as well as the values of y0 and A. The next section shows the results
of computations designed to investigate this hypothesis.

5. The monopole encounters a north–south trough

Within the context of the above discussion, it is important to note that for negative values of A
in Eq. (10), the contours of potential vorticity above the (trough) topography are widened, as op-
posed to being narrowed as for the counterpart contours above the ridge discussed in the preceding
sections.
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Fig. 11. Trajectories of the maximum of vorticity of a monopole, initially at (3;−3), encountering a ridge or trough given
by Eq. (10) with several heights A, including the no-topography case A= 0 (solid line). In all cases f0 = 0.

As shown in the trajectory plots of Fig. 11, for the reference starting position y0 = −3, the
di�erences in the form of the potential vorticity contours for ridges and troughs having the same
values of |A| result in rather dramatic di�erences in the monopole’s motion across the topography.
For example, (i) for positive values of A, the monopole bends signi�cantly further to the north
than the negative A counterpart on the approach to the ridge, and (ii) the �nal displacement of the
monopole after crossing the ridge is signi�cantly further to the north with the ridge topographies
than with the trough counterparts. Note that the cases shown in Fig. 11 are all characterised as a
‘c’ 
ow type for all positive values of A considered (see Table 1).
Further evidence of such di�erences in the behaviour of the monopole in its interaction with

topography is presented in Fig. 12, where a time sequence of contours of !p is shown for a monopole
encountering a trough of A=−0:20. Such an interaction can be compared directly with the sequence
shown in Fig. 2, where the only di�erence in prescibed conditions from Fig. 12 is the di�erence in
sign of A. Such comparisons show clearly that the degree of deformation caused to the monopole
is signi�cantly less when the topography is a trough instead of a ridge of the same amplitude |A|.
A summary of the behaviour of the monopole for di�erent trough depths and initial positions y0 is
given in Table 2, a table that can be compared directly with the corresponding ridge results presented
in Table 1.
An important di�erence between a ridge and a trough is the e�ect of the topography upon the

size and strength of the vortex that tries to cross it. This can be seen by writing Eq. (3) as

D
Dt

(
!+ f

H

)
= �32!; (13)

where D=Dt is the material derivative. Assuming for a moment that viscous e�ects are negligible
while the vortex crosses the topography, !p = (! + f)=H is conserved according to Eq. (13). If
f does not vary signi�cantly when the monopole crosses the topography, then it follows that a
monopole climbing a ridge weakens. At the same time it becomes larger in lateral extent due to
conservation of mass inside the vortex (see also VGD, who show this in a number of cases). This
makes it easier for the monopole to be deformed by the ambient vorticity �eld. On the other hand,
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Fig. 12. Contours of potential vorticity on the x; y-plane of a Bessel monopole, initially at (3;−3), encountering a trough
given by Eq. (10) with A=−0:20 (shaded region) and f0 = 0. Contours as in Fig. 2.

a trough, with its increase in 
uid depth, causes the monopole to become stronger and smaller
in lateral size. A vortex entering a trough is therefore less susceptible to deformations caused by
topography-induced vorticity of a certain magnitude than a vortex which climbs a counterpart ridge.
Further interesting comparisons are revealed between trough and ridge e�ects for values of y0

signi�cantly less (i.e. more negative) than the value (y0 =−3) in Fig. 12. For example, in Fig. 13
contours of !p are shown for A=−0:20 and y0 =−7, a case comparable with the ridge in Fig. 6
having the same values of |A| and y0. In contrast to the case of the ridge (where the incident
monopole is initially rebounded from the topographical barrier), the monopole in Fig. 13 �rst crosses
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Table 2
As Table 1, but for a trough along the y-axis. In the cases marked with an asterisk, the monopole brie
y enters the trough
but leaves it again at the east side

A=−0:30 A=−0:20 A=−0:10
y0 f∗

0 Fate Tf Fate Tf Fate Tf

+7 3:0 r (50) r∗ (50) r (50)
+5 2:4 r=d∗ 48.0 r (50) r∗ (50)
+3 1:8 r (50) r (50) r∗ (50)
+1 1:2 r∗ (50) r∗ (50) t 63.4
−1 0:6 c=d 39.2 c (50) c (50)
−3 0:0 c (50) c (50) c (50)
−5 −0:6 t=d 98.8 c (50) c (50)
−7 −1:2 c 75.5 t 77.5 c (50)
−9 −1:8 c=d 60.2 t (100) c (75)
−11 −2:4 d 46.1 d 60.4 t 85.1
−13 −3:0 d 38.0 d 60.0 t=d 83.9

Fig. 13. Contours of potential vorticity on the x; y-plane of a Bessel monopole, initially at (3;−7), encountering a trough
given by Eq. (10) with A=−0:20 (shaded region) and f0 = 0. Contours as in Fig. 2 in the range [− 4:0; 1:0].
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the trough (at T =65 both !max and the tracer are located close to x=−1:5), but the vortex returns
eastward and, for this set of parameters, it stays inside the trough after about T=70 and subsequently
decays. Strictly, therefore, the monopole eventually becomes trapped (‘t’) by the topography, though
by a mechanism di�erent from the trapping process for the ridges. For the latter case, there is no
prior crossing of the topographic feature before the trapping above the ridge occurs.
For the cases typi�ed by Fig. 13, the vorticity induced by the topography at the monopole’s western

side (and the subsequent formation of a secondary dipolar structure) plays an important role; for the
cases shown, this induced vorticity is evidently su�ciently strong for the monopole to be redirected
back into the trough. As indicated in Table 2, interactions between troughs and monopoles initially
having positive values of y0 are characterised by the so-called rebound (‘r’) 
ow types. As with the
trapped (‘t’) case of Fig. 13, however, the rebound phenomenon occurs in some cases (marked with
an asterisk in Table 2) as a secondary e�ect after the monopole has initially entered the trough.
In this sense, there is a rather fundamental di�erence in behaviour between ‘r’ and ‘t’ 
ow types
for the ridge and trough topographies. For the trough cases in which such secondary rebounds are
observed, the tracer and !max are seen to penetrate no closer to the bottom of the trough than about
x =+0:5.
Figs. 14–16 show the e�ects of the deepest trough studied (A=−0:30) upon the evolution of the

monopole for the successively higher values of y0. For the lowest value of y0 shown (y0 =−9), the
ambient vorticity �eld retains the monopole within the trough, where it disintegrates (see Fig. 14);
prior to this stage, the vortex enters the trough at about T = 15 and stays near the bottom where
it decreases in strength due to viscous decay, subject to shape deformations. Fig. 14 shows that at
about T =50, when !max is still near x=0, the vortex is strongly deformed and has lost much of its
initial monopole structure. The position of both !max and the tracer show the monopole’s subsequent
westward movement out of the trough to x = −2:8 at T = 60, before the position of !max moves
away suddenly from that of the tracer to a location along the boundary. By then, a clear vortex
containing the tracer has formed and, due to the ambient vorticity �eld con�guration, this vortex re-
mains not far from x=−3 as it decays. Computations show that after about T=85 this vortex feature
is indistinguishable from the ambient vorticity �eld.
For higher values of y0 at the same depth (A=−0:30) of trough, the above behaviour is modi�ed

signi�cantly. For example, with y0 = −1 (see Fig. 15) the monopole initially crosses the trough,

Fig. 14. Contours of potential vorticity on the x; y-plane of a Bessel monopole, initially at (3;−9), encountering a ridge
given by Eq. (10) with A=−0:30 (shaded region) and f0 = 0. Contours as in Fig. 2 in the range [− 4:4; 0:6].



176 J.H.G.M. van Ge�en, P.A. Davies / Fluid Dynamics Research 26 (2000) 157–179

Fig. 15. Trajectory of the maximum of vorticity (solid line) and the tracer (dashed line) of a monopole initially at (3;−1),
encountering a ridge given by Eq. (10) with A=−0:30 and f0 = 0. Black dots mark the position of the tracer at intervals
of �T = 5.

Fig. 16. Contours of potential vorticity on the x; y-plane of a Bessel monopole, initially at (3;+5), encountering a ridge
given by Eq. (10) with A=−0:30 (shaded region) and f0 = 0. Contours as in Fig. 2 in the range [0:6; 5:0].

before being forced back into the trough by the deformed vorticity �eld. During this process (see
Fig. 15), the position of both !max and the tracer are near x=−1 at T=25–35; after about T=40 the
position of !max moves to the bottom of the trough while the tracer moves away to the northwest.
For the highest value of y0 shown here (y0=+5; see Fig. 16), the association between category ‘d’

and full disintegration of the vortex is inappropriate. The monopole is, of course, strongly deformed
by the interaction with the potential vorticity �eld associated with deep trough. Computations show
that the monopole approaches the trough until about T = 13, when !max and the tracer are located
near x=−1:7. The monopole then moves away to the east, performs a few loops and returns to the
trough for a second encounter after T = 30. As Fig. 16 shows, after about T = 40 the tracer and
!max reach the eastern edge of the trough, but the monopole is then so strongly deformed that the
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tracer leaves !max and starts circling around it, following !max into the trough, where it remains at
about x =+0:25. After T = 48 the vortex with the tracer moves away from the trough again at the
east side, leaving !max elsewhere in the domain.

6. Concluding remarks

A two-dimensional numerical model has been used to study the e�ect of a north–south oriented
ridge or trough on the evolution of a monopolar vortex that moves to the northwest due to the
�-e�ect. The principle objective of the study has been to investigate the e�ects of di�erent initial
north–south positions y0 of the monopole on the interaction with the topography, in order to extend
a previous study (Van Ge�en and Davies, 1999 — here named VGD) in which such an interaction
was studied for a �xed value of y0. The present study has shown that varying the initial y0-position
of the monopole is dynamically equivalent to changing the value of f0, the reference constant value
in the Coriolis parameter f = f0 + �y. (Note that the previous VGD study considered only f0 = 0,
and that here only changes in y0 were considered since varying y0 at f0 = 0 produces the same
e�ect dynamically as varying f0 at constant y0.)
A further objective has been to investigate the e�ect upon the vortex–topography interaction of the

initial, undisturbed con�guration of the potential vorticity �eld associated with the topography. Since
positive (ridge) and negative (trough) topographies of otherwise-identical geometrical forms and
dimensions have di�erent potential vorticity con�gurations, di�erences are to be anticipated between
the interactions of a given monopole with a ridge or trough. The focus of the study has been to
determine the nature of these di�erences for di�erent values of A, the amplitude of the topographic
element, and y0, the initial north–south location of the monopole.
The study has shown that all of the above factors are able to in
uence directly the type of 
ow

that results from the interaction of the self-propelled vortex and the topographical element. Tables 1
and 2 (contained within Sections 4 and 5, respectively) have summarised the various characteristic

ow types observed with ridge and trough topographies, respectively, and have demonstrated, in
particular, the di�erences between such identi�able 
ow types for the positive and negative A values.
The model shows that for di�erent initial positions y0 there are essentially four regimes for the fate
of the monopole: it can be destroyed, trapped or rebounded by the topographic interaction, as well
as being able to cross it. Furthermore, the fate of the monopole depends on the amplitude |A| of the
tropography: the lower the value of |A|, the easier (i.e. for a wider range of y0-positions) can the
monopole cross the obstruction.
Of particular relevance here has been the observation in VGD that for the same domain and the

same initial conditions as the present study, a monopole initially located at a �xed reference position
y0 =−3 (f0 = 0) was evidently able to cross a given ridge only if it had gathered su�cient positive
potential vorticity !p at its northwest side. Though such a conclusion is trivially invalid for ridge
and trough topographies having in�nitessimal amplitudes A, the cases of �nite-height ridge topog-
raphy considered in VGD and the particular value of y0 =−3 investigated therein suggest strongly
that such a distribution of !p is associated with the passage over the ridge by the vortex. The
present study, however, with varying values of y0 (or, equivalently, varying f0-values) has shown
that the �nding of VGD is incomplete in this regard and that the fate of the monopole is determined
generally by the initial potential vorticity con�guration above the topographic element. The sign of
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the potential vorticity is of importance because it determines the details of the potential vorticity
distribution above the topography.
The present study has con�rmed the �ndings of VGD that as the monopole propagates towards

the topography, the principal e�ect of the motion of the monopole is the distortion caused to the
initially undisturbed vorticity contours by the generation of Rossby waves. As a result of subsequent
interactions with this secondary vorticity, the so-called beta-gyres (e.g. Sutyrin and Flierl, 1994) are
generated (see Section 3); the monopole’s trajectory far from the topography consists of small-scale
lateral deviations superimposed upon a straight line path. As the vortex encounters the topography,
the topographically generated potential vorticity �eld is advected by the velocity induced by the
vortex itself. Since the contours of potential vorticity in the presence of a north–south ridge or
trough are not simply aligned in the east–west direction, the topographic beta-gyres induced by the
advection process become signi�cantly di�erent from the counterpart beta-gyres associated with the
�-plane motion in the absence of topography.
Moreover, as the results of the computations discussed in the present paper illustrate (see, for

example, Figs. 2, 3, 6, 8, and 12), the shape of the initially undisturbed potential vorticity contours
with topography present depends on (i) the value of y0, and (ii) whether the topographic element
is a ridge or a trough. Consequently, as the model results illustrate, the advection of the ambient
potential vorticity �eld by the approaching monopole induces topographic beta-gyres of fundamentally
di�erent character for di�erent values of y0 and for di�erent polarities of A. The outcome of a vortex–
topography interaction is thus determined by the topography-induced deformation of the background
vorticity �eld due to the �-e�ect. And this deformation is larger for initial positions more to the
north or south and for higher ridges and deeper troughs.
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