Collapse interactions of finite-sized two-dimensional vortices
P.W.C. Vosbeek, J.H.G.M. van Geffen, V.V. Meleshko and G.J.F. van Heijst
Physics of Fluids 9, 3315--3322 (1997)
References
- W. Gröbli,
"Specielle Probleme über die Bewegung geradliniger paralleler
Wirbelfäden," Vierteljahr. Naturfor. Geselsch. Zürich,
22, 37, 129 (1877).
- H. Aref, N. Rott, and M. Thomann,
"Gröbli's solution of the three-vortex problem,"
Ann. Rev. Fluid Mech., 24, 1 (1992).
- E.A. Novikov and Yu.B. Sedov,
"Vortex collapse,"
Sov. Phys. JETP, 50 (2), 297 (1979).
- H. Aref,
"Motion of three vortices,"
Phys. Fluids, 22, 393 (1979).
- Y. Kimura,
"Similarity solution of two-dimensional point vortices,"
J. Phys. Soc. Japan, 56, 2024 (1987).
- Y. Kimura,
"Chaos and collapse of a system of point vortices,"
Fluid Dyn. Res., 3, 98 (1988).
- V.V. Meleshko and G.J.F. van Heijst,
"Interacting two-dimensional vortex structures: point vortices,
contour kinematics and stirring properties,"
Chaos, Solitons and Fractals, 4, 977 (1994).
- O.U. Velasco Fuentes, G.J.F. van Heijst, and B.E. Cremers,
"Chaotic transport by dipolar vortices on a beta-plane,"
J. Fluid Mech., 291, 139 (1995).
- O.U. Velasco Fuentes, G.J.F. van Heijst, and N.P.M. van Lipzig,
"Unsteady behaviour of a topography-modulated tripole,"
J. Fluid Mech., 307, 11 (1996).
- G.K. Batchelor,
Introduction to Fluid Dynamics,
Cambridge University Press, Cambridge (1967).
- D.G. Dritschel,
"Contour surgery: A topological reconnection scheme for extended
integrations using contour dynamics,"
J. Comput. Phys., 77, 240 (1988).
- D.G. Dritschel,
"Contour dynamics and contour surgery: Numerical algorithms for
extended, high-resolution modelling of vortex dynamics in two-dimensional,
inviscid, incompressible flows,"
Comput. Phys. Rep., 10, 77 (1989).
- N.J. Zabusky, M.H. Hughes, and K.V. Roberts,
"Contour dynamics for the Euler equations in two dimensions,"
J. Comput. Phys., 30, 96 (1979).
- P.W.C. Vosbeek and R.M.M. Mattheij,
"Contour dynamics and symplectic time integration,"
J. Comput. Phys., 133 (2), 222 (1997).
- J.M. Sanz-Serna and M.P. Calvo,
Numerical Hamiltonian Problems,
(Chapman & Hall, London, 1994).
- J. Weiss,
"The dynamics of enstrophy transfer in two-dimensional hydrodynamics,"
Physica D, 48, 273 (1991).
- J.C. McWilliams,
"The emergence of isolated coherent vortices in turbulent flow,"
J. Fluid Mech., 146, 21 (1984).
- H. Lamb,
Hydrodynamics,
6th ed. (Cambridge University Press, Cambridge, 1932).
- A.E.H. Love,
"On the stability of certain vortex motions,"
Proc. Lond. Math. Soc., 35, 18 (1893).
- D.G. Dritschel,
"The nonlinear evolution of rotating configurations of uniform
vorticity," J. Fluid. Mech., 172, 157 (1986).
- D.G. Dritschel and M. de la Torre Juárez,
"The instability and breakdown of tall columnar vortices in a
quasi-geostrophic fluid,"
J. Fluid. Mech., 328, 129 (1996).
- P. Orlandi,
"Vortex dipole rebound from a wall,"
Phys. Fluids A, 2, 1429 (1990).
- R. Verzicco, J.B. Flór, G.J.F. van Heijst, and P. Orlandi,
"Numerical and experimental study of the interaction between a vortex
dipole and a circular cylinder,"
Exp. Fluids, 18, 153 (1995).
- J.H.G.M. van Geffen, V.V. Meleshko, and G.J.F. van Heijst,
"Motion of a two-dimensional monopolar vortex in a bounded
rectangular domain,"
Phys. Fluids, 8, 2393 (1996).
===> abstract + contents
- H. Villat,
Leçons sur la Théorie des Tourbillons,
Gauthier-Villars, Paris (1930).
- W. Müller,
"Bewegung von Wirbeln in einer idealen Flüssigkeit unter dem
Einfluss von ebenen Wänden,"
Z. angew. Math. Mech, 10, 227 (1930).
- P.G. Saffman,
Vortex Dynamics,
Cambridge University Press, Cambridge (1992).
<=== contents of this paper
<=== main publication list
<=== list of papers for which 'nsevol' is
used
Jos van Geffen --
Home |
Site Map |
Contact Me
last modified: 26 May 2001