Collapse interactions of finite-sized two-dimensional vortices

P.W.C. Vosbeek, J.H.G.M. van Geffen, V.V. Meleshko and G.J.F. van Heijst
Physics of Fluids 9, 3315--3322 (1997)

References

  1. W. Gröbli, "Specielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden," Vierteljahr. Naturfor. Geselsch. Zürich, 22, 37, 129 (1877).
  2. H. Aref, N. Rott, and M. Thomann, "Gröbli's solution of the three-vortex problem," Ann. Rev. Fluid Mech., 24, 1 (1992).
  3. E.A. Novikov and Yu.B. Sedov, "Vortex collapse," Sov. Phys. JETP, 50 (2), 297 (1979).
  4. H. Aref, "Motion of three vortices," Phys. Fluids, 22, 393 (1979).
  5. Y. Kimura, "Similarity solution of two-dimensional point vortices," J. Phys. Soc. Japan, 56, 2024 (1987).
  6. Y. Kimura, "Chaos and collapse of a system of point vortices," Fluid Dyn. Res., 3, 98 (1988).
  7. V.V. Meleshko and G.J.F. van Heijst, "Interacting two-dimensional vortex structures: point vortices, contour kinematics and stirring properties," Chaos, Solitons and Fractals, 4, 977 (1994).
  8. O.U. Velasco Fuentes, G.J.F. van Heijst, and B.E. Cremers, "Chaotic transport by dipolar vortices on a beta-plane," J. Fluid Mech., 291, 139 (1995).
  9. O.U. Velasco Fuentes, G.J.F. van Heijst, and N.P.M. van Lipzig, "Unsteady behaviour of a topography-modulated tripole," J. Fluid Mech., 307, 11 (1996).
  10. G.K. Batchelor, Introduction to Fluid Dynamics, Cambridge University Press, Cambridge (1967).
  11. D.G. Dritschel, "Contour surgery: A topological reconnection scheme for extended integrations using contour dynamics," J. Comput. Phys., 77, 240 (1988).
  12. D.G. Dritschel, "Contour dynamics and contour surgery: Numerical algorithms for extended, high-resolution modelling of vortex dynamics in two-dimensional, inviscid, incompressible flows," Comput. Phys. Rep., 10, 77 (1989).
  13. N.J. Zabusky, M.H. Hughes, and K.V. Roberts, "Contour dynamics for the Euler equations in two dimensions," J. Comput. Phys., 30, 96 (1979).
  14. P.W.C. Vosbeek and R.M.M. Mattheij, "Contour dynamics and symplectic time integration," J. Comput. Phys., 133 (2), 222 (1997).
  15. J.M. Sanz-Serna and M.P. Calvo, Numerical Hamiltonian Problems, (Chapman & Hall, London, 1994).
  16. J. Weiss, "The dynamics of enstrophy transfer in two-dimensional hydrodynamics," Physica D, 48, 273 (1991).
  17. J.C. McWilliams, "The emergence of isolated coherent vortices in turbulent flow," J. Fluid Mech., 146, 21 (1984).
  18. H. Lamb, Hydrodynamics, 6th ed. (Cambridge University Press, Cambridge, 1932).
  19. A.E.H. Love, "On the stability of certain vortex motions," Proc. Lond. Math. Soc., 35, 18 (1893).
  20. D.G. Dritschel, "The nonlinear evolution of rotating configurations of uniform vorticity," J. Fluid. Mech., 172, 157 (1986).
  21. D.G. Dritschel and M. de la Torre Juárez, "The instability and breakdown of tall columnar vortices in a quasi-geostrophic fluid," J. Fluid. Mech., 328, 129 (1996).
  22. P. Orlandi, "Vortex dipole rebound from a wall," Phys. Fluids A, 2, 1429 (1990).
  23. R. Verzicco, J.B. Flór, G.J.F. van Heijst, and P. Orlandi, "Numerical and experimental study of the interaction between a vortex dipole and a circular cylinder," Exp. Fluids, 18, 153 (1995).
  24. J.H.G.M. van Geffen, V.V. Meleshko, and G.J.F. van Heijst, "Motion of a two-dimensional monopolar vortex in a bounded rectangular domain," Phys. Fluids, 8, 2393 (1996).
    ===> abstract + contents
  25. H. Villat, Leçons sur la Théorie des Tourbillons, Gauthier-Villars, Paris (1930).
  26. W. Müller, "Bewegung von Wirbeln in einer idealen Flüssigkeit unter dem Einfluss von ebenen Wänden," Z. angew. Math. Mech, 10, 227 (1930).
  27. P.G. Saffman, Vortex Dynamics, Cambridge University Press, Cambridge (1992).


<=== contents of this paper

<=== main publication list
<=== list of papers for which 'nsevol' is used

 
Jos van Geffen -- Home  |  Site Map  |  Contact Me

last modified: 26 May 2001