Spaceborne observations of lightning NO2 in the Arctic
Zhang, X., van der A, R., Ding, J.,
Eskes, H., van Geffen, J., Yin, Y., Anema, J., Vagasky, C.,
Lapierre, J.L. and Kuang, X.: 2023,
Environ. Sci. Technol. 57, 6, 2322-2332.
doi: 10.1021/acs.est.2c07988
Abstract
The Arctic region is experiencing notable warming as well as more lightning.
Lightning is the dominant source of upper tropospheric nitrogen oxides
(NOx), which are precursors for ozone and hydroxyl radicals. In this study,
we combine the nitrogen dioxide (NO2) observations from the TROPOspheric
Monitoring Instrument (TROPOMI) with Vaisala Global Lightning Dataset 360 to
evaluate lightning NO2 (LNO2) production in the Arctic. By analyzing
consecutive TROPOMI NO2 observations, we determine the lifetime and
production efficiency of LNO2 during the summers of 2019-2021. Our results
show that the LNO2 production efficiency over the ocean is ~6 times higher
than over continental regions. Additionally, we find that a higher LNO2
production efficiency is often correlated with lower lightning rates. The
summertime lightning NOx emission in the Arctic (north of 70° N) is
estimated to be 219 ± 116 Mg of N, which is equal to 5% of
anthropogenic NOx emissions. However, for the span of a few hours, the
Arctic LNO2 density can even be comparable to anthropogenic NO2 emissions in
the region. These new findings suggest that LNO2 can play an important role
in the upper-troposphere/lower-stratosphere atmospheric chemical processes
in the Arctic, particularly during the summer.
===>
PDF file of the paper
(11 pages; 6.8MB)
|
online paper
<=== Publications page
<=== Post-doc. research at KNMI page
Jos van Geffen --
Home |
Site Map |
Contact Me
created: 2 February 2023
last modified: 9 March 2023