Influence of convection on the upper tropospheric O3 and NOx budget in southeastern China

Zhang, X., Yin, Y., van der A, R., Eskes, H., van Geffen, J., Li, Y., Kuang, X., Lapierre, J. L., Chen, K., Zhen, Z., Hu, J., He, C., Chen, J., Shi, R., Zhang, J., Ye, X. and Chen, H.: 2022,
Atmos. Chem. Phys. 22, 5925-5942.

Abstract

Thunderstorms can significantly influence the air composition via strong updraft and lightning nitrogen oxides (LNOx). In this study, the ozonesondes and TROPOMI (TROPOspheric Monitoring Instrument) nitrogen dioxide (NO2) observations for two cases are combined with a model to investigate the effects of typical strong convection on vertical redistribution of air pollutants in Nanjing, southeastern China. The ozonesonde observations show higher O3 and water vapor mixing ratios in the upper troposphere (UT) after convection, indicating the strong updraft transporting lower-level air masses into the UT and the possible downward O3-rich air near the top of UT over the convective period. During the whole convection life cycle, the UT O3 production is driven by the chemistry (5-10 times the magnitude of dynamic contribution) and reduced by the LNOx (-40%). Sensitivity tests demonstrate that neglecting LNOx in standard TROPOMI NO2 products causes overestimated air mass factors over fresh lightning regions and the opposite for outflow and aged lightning areas. Therefore, a new high-resolution retrieval algorithm is applied to estimate the LNOx production efficiency. Our work shows the demand for high-resolution modeling and satellite observations on LNOx emissions of both active and dissipated convection, especially small-scale storms.

 
===> On-line paper  |  PDF file of the paper (18 pages; 12MB)


<=== Publications page
<=== Post-doc. research at KNMI page

 
Jos van Geffen -- Home  |  Site Map  |  Contact Me

created: 9 May 2022
last modified: 9 May 2022