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Abstract

Ž .A two-dimensional 2D numerical model is used to investigate the possible effects of a
cosine-shaped, circularly symmetric seamount on the motion of a monopolar vortex on a b-plane.
The monopole moves to the northwest due to the b-effect and encounters the seamount from the
southeast. The lateral dimension of the topographic feature is varied between one and four times
that of the monopole and the seamount is located at latitudes between far south and far north of
the equator. For comparable topographic and vortex scales, the monopole’s trajectory differs
somewhat from its trajectory in the absence of any bottom topography, the difference being bigger
for mountains further away from the equator. Large seamounts in the southern hemisphere can
deflect the monopole more towards the north or they can rebound the monopole back to the
southeast, thus forming a barrier for the vortex. Large seamounts in the northern hemisphere
deform the monopole significantly, leading to complicated trajectories after the vortex has crossed

Ž .the topography, or to trapping permanently or temporarily by the topography. If it is trapped, the
monopole circles around the top of the mountain, while performing small loops, and it is
eventually destroyed by the topography-induced vorticity. q 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Vortices are common phenomena under many geophysical circumstances. In the
Earth’s oceans, for example, Meddies, Gulf Stream eddies and anticyclones, Agulhas
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Žeddies, etc. have been observed see, e.g., Richardson, 1993a,b; Bower et al., 1995;
.Kamenkovich et al., 1996; Bograd et al., 1997 . These vortices move through the oceans

Ž .due to a combination of the ambient flow and the latitudinal y variation of the Coriolis
Ž .acceleration the so-called b-effect . On their way through the ocean, these eddies

encounter topographic features at the ocean floor. It is known that such an encounter
affects the eddy’s trajectory. This can lead to large deformations of the eddy, or even to

Ž .its destruction e.g., Richardson, 1993a,b; Shapiro et al., 1995 , as a consequence of
which the contents of the eddy may be released in the ocean. Though the background of
the study presented here is a vortex that encounters a topography in oceans, similar
processes can be of importance for the evolution of large-scale vortices in the atmo-

Žsphere for reviews see, e.g., Bengtsson and Lighthill, 1982; Hopfinger and Van Heijst,
.1993 .

Since oceanic vortices are thought to play an important role in the transport of water
Ž .properties such as salt, heat, momentum and pollutants , it is of importance to

understand the basic mechanisms of what happens if a vortex encounters bottom
topography. In that light, the present numerical study considers the effect of a circular
mountain on the motion and evolution of a monopolar vortex, as a model for what could
happen to an oceanic vortex. In Section 3.1, comparisons are made between the key
controlling parameters of the model and the oceanic eddies under consideration, in order
to establish the relevance of the results to oceanic processes. The monopole in the

Ž . Ž .simulations is cyclonic anti-cyclonic in the northern southern hemisphere and it
Ž .moves to the northwest due to the b-effect see, e.g., Van Heijst, 1994 . Carnevale et al.

Ž .1991 have shown with laboratory and numerical experiments that in the northern
hemisphere a cyclonic monopole, when placed on a hill, climbs to the top of the hill in
an anti-cyclonic spiral. The reason for this is that the b-effect is dynamically equivalent

Žto a sloping bottom boundary, with north towards shallow fluid depth Van Heijst,
.1994 ; hence, for a hill the local topography-induced northwest is uphill and to the left.

Ž .In their experiments, Carnevale et al. 1991 used a monopole that was much smaller
in lateral size than the topography and the monopole was released on the topography. In
the present study, however, the monopole is initialised at a position to the southeast of

Ž .the seamount. The radius of this mountain R is varied from the same size as to four
Ž .times that of the monopole a . The latter moves due to the b-effect, represented by b y

in the Coriolis parameter fs f qb y, with y as the local north coordinate. Carnevale et0
Ž .al. 1991 used two positive values of f , representing a topography located at two0

latitudes in the northern hemisphere. In the case study numerical simulations discussed
Ž .below, b is kept constant at 0.3 dimensionless units and f is varied from y5 to q5,0

thus representing encounters taking place between far south and far north of the equator
Ž .for f s0, the mountain is at the equator . Such extreme cases capture the essential0

features and ranges of the possible effects of a seamount on a vortex.
Ž .A range of numerical experiments in which a dipolar vortex a modon encounters a

Ž . Ž .topography ridge, hill, random or other was presented by Carnevale et al. 1988 . They
observed in some cases effects of shedding of vorticity from the topography during the

Ž .approach of the vortex similar to the effects discussed below. Carnevale et al. 1988
observed these effects, for instance, when the modon breaks up if it encounters a hill, in
which case the positive vortex is seen to move uphill, where it can remain trapped; the
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negative vortex, meanwhile, moves away from the hill, together with positive vorticity
generated by the flow across the hill. Modon breakup occurs on a hill with a horizontal
scale similar to or somewhat less than that of the modon. In the present study, the
monopole is of the same size as or smaller than the mountain.

Ž .The numerical model used is the same as that of Van Geffen and Davies 1999a; b : a
Ž .one-layer two-dimensional 2D barotropic model with rigid-lid approximation, with

bottom topography suitably incorporated. Section 2.3 reviews the main assumptions and
approximations of the model in relation with oceanic vortices such as those mentioned
above.

Ž .Van Geffen and Davies 1999a; b showed that when a monopole encounters a 2D
Žtopographic ridge, the height and width of the ridge and the value of f or, equiva-0

.lently, the north–south position of the encounter determine the evolution of the
monopole: the vortex can cross the ridge, be trapped on the ridge and decay there, be
destroyed on the ridge by strong vorticity gradients, or be rebounded by the ridge
without reaching the foot of the ridge. The above studies have illustrated the practical
difficulties in categorising flows corresponding to the many combinations of the free
parameters of the problem. Accordingly, in the present study, the most profitable
approach is considered to be that of the case study, for fixed values of some of the
controlling parameters. The height of the cosine-shaped, circularly symmetric seamount,
for example, is kept fixed at h s0.4, relative to the fluid depth away from themax

topography, whereas its radius R is varied. Varied is also the value of f in the Coriolis0

parameter, as mentioned above. All other model parameters remain unchanged.
The remainder of the paper is organised as follows. The model and some computa-

tional aspects are given in the next section. Section 3 presents the results of the
simulation and some concluding remarks are formulated in the Section 4.

2. Description of the model

This section describes in brief the model equations and some computational aspects
Ž .— for more details, the reader is referred to Van Geffen and Davies 1999a — and it

introduces the monopole and the isolated seamount topography used in the simulations.
The section ends with a discussion of some of the assumptions made in the model.

2.1. The numerical method

The numerical model is based on the assumption that the motions in the fluid are
Ž .quasi- 2D and bounded above by a ridig lid, such that the topography-induced vertical

Ž .motion w is much smaller than the horizontal motions u, Õ, with zs u, Õ, w the
relative velocity of the flow in a Cartesian coordinate system. The relative vorticity v of
this flow is then given by vsv ks==z, with k the unit normal vector in the vertical
Ž .z direction. The evolution in time of v is described by the 2D Navier–Stokes
equation in the vorticity–streamfunction formulation:

Ev
2qJ v ,c sn= v , 1Ž .Ž .p p

Et
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Žwhere n is the kinematic viscosity, J the Jacobian operator describing the non-linear
.advection effects and c a streamfunction defined by:p

HusEc rE yp
or Hzs==kc s=c =k . 2Ž .p p½HÕsyEc rExp

Ž .Some authors e.g., Grimshaw et al., 1994 denote c as the ‘‘mass transport stream-p
Ž .function’’. Van Geffen and Davies 1999a have preferred to denote this quantity as the

‘‘potential streamfunction’’ because of its clear connection with the potential vorticity
Ž .v ; the two terms are completely equivalent. In Eq. 1 , the potential vorticity is givenp

by:

vq f
v s , 3Ž .p H

Ž .where f is the Coriolis parameter, describing the latitudinal y variation of the vertical
component of the Earth’s angular velocity. In the so-called b-plane approximation used
in the present paper, the Coriolis parameter with respect to a reference latitude is given

Ž .by e.g., Van Heijst, 1994 :

fs f qb yqOO y2 , 4Ž .Ž .0

with y as the local north coordinate.
The relation between vorticity and streamfunction is given by what can be denoted

the modified Poisson equation:

1
2Hvsy= c q =HP=c , 5Ž .Ž .p pH

which reduces to the regular Poisson equation vsy=
2c for a uniform fluid depth

Ž .with c as the regular streamfunction .
Ž .If Eq. 1 is made dimensionless using a typical length scale L and a typical time0

scale T , the familiar Reynolds number Re appears: ResL2rT n . In what follows,0 0 0

these typical scales are set equal to unity, so that the Reynolds number, in effect, is
ŽRes1rn , and all quantities are given in dimensionless units see Van Geffen and

.Davies, 1999a . This implies that a vortex with a translation velocity of 2, say, travels 2
length units in 1 time unit. What is chosen for the parameters in the simulations and
what that means for the length and time scales involved is discussed in Section 3.1. The
default fluid depth, away from any topography, is scaled to Hs1, a scaling that is
independent of the horizontal scale L .0

Ž . Ž .Eqs. 1 and 5 form the set of equations solved by the numerical method for given
Ž . Ž .HsH x, y , f and b , starting from an initial vorticity distribution v x, y,ts0 .0

The equations are solved with a finite difference method on a rectangular grid in a
Ž .rectangular x, y-domain. The time evolution in Eq. 1 is computed with an explicit

third-order Runge–Kutta scheme, the viscous term n=
2v with a Crank–Nicolson

Ž .scheme and the nonlinear term J v ,c with the Arakawa scheme. The use of thep p



( )J.H.G.M. Õan Geffen, P.A. DaÕiesrDynamics of Atmospheres and Oceans 32 2000 1–26 5

Ž .Arakawa scheme Arakawa, 1966 guarantees, on the one hand, that in the inviscid case
energy, entropy and skew symmetry are conserved, and, on the other hand, that the

Ž .computations have a high degree of stability. Eq. 5 is solved with a multigrid method
by a routine from the NAG Library, which limits the number of grid cells to 2 n

Ž .ns1,2,3, . . . in either direction.
The possible effects of the boundaries of the domain are minimised by using a

Žstress-free condition on the boundaries which means that the boundary is a streamline
.along which the fluid can flow freely, without being able to pass through the boundary

Ž .and by using a domain that is much larger see below than the diameter of the
monopolar vortex that is used.

2.2. The monopole, the domain and the seamount

The vortex is represented at Ts0 by a monopolar vortex of Bessel type, with a
vorticity distribution given by:

° ka GŽ .
J kr , rFaŽ .0~ 2vs 6Ž .2p a J kaŽ .1¢

0, rGa,

where r is the radial distance to the centre of the vortex, a its radius, and G its strength
or circulation. J and J are Bessel functions of the first kind and kaf2.4048 is the0 1

first non-zero root of J . The maximum of vorticity is located at the centre of the0

monopole, where J equals unity. This axisymmetric vortex is an exact, stationary0

solution of the inviscid vorticity equation for a constant Coriolis parameter and in the
absence of any topography in an infinite domain, satisfying the linear relationship
vsk 2c . The outcome of the encounter of the topography by the monopole is therefore
not influenced by possible instabilities in the vortex itself.

The simulations are performed with a monopole with as0.5 and Gsq4, hence,
Ž . Ž .the monopole is cyclonic anti-cyclonic in the northern southern hemisphere. The
Ž . Ž .monopole is initialised at x , y s q3,y3 in a 20=20 domain centred at the0 0

origin.
The influence of the size of the domain on the monopole’s evolution has been subject

Ž .to a sensitivity study see Van Geffen and Davies, 1999a and a 20=20 domain has
been found to be sufficiently large to neglect possible effects of the boundaries of the

Ž .domain. In Van Geffen and Davies 1999a , the topography was a ridge extending to the
boundaries, whereas in the present study the topography is a seamount of small size,
small compared with the size of the domain, hence the effect of the boundaries of the
20=20 domain on the monopole’s evolution can be neglected in the present study as
well.

ŽDue to the b-effect the monopole will move to the northwest see, e.g., Van Heijst,
.1994 . The trajectory the monopole follows is not a straight line but one containing

Ž .bends and kinks in it see, for instance, the solid line in Fig. 1 because, as the monopole
moves, it leaves behind vorticity in the form of Rossby waves. The monopole itself

Ž .interacts subsequently with this b-induced vorticity by some authors named beta-gyres .



( )J.H.G.M. Õan Geffen, P.A. DaÕiesrDynamics of Atmospheres and Oceans 32 2000 1–266

In the absence of any topography, the monopole passes then roughly through the origin
of the domain. And when bs0.3, as in the present study, the monopole completes its

Ž . Ž .trajection at about y3,q3 at Ts50 the end time of most simulations , as shown by
Ž . Ž .Van Geffen and Davies 1999a . For larger smaller b-values, the monopole decays

Ž .faster slower due to the loss of vorticity as Rossby waves and the monopole does not
Ž .end up roughly symmetric in the origin with respect to its starting point q3,y3 .

ŽOther combinations of G and b could, of course, result in a similar ‘‘symmetry’’; in
.that sense the choice Gsq4 and bs0.3 is somewhat arbitrary.

On its way to the northwest, the monopole encounters an isolated, circularly
symmetric, cosine-shaped mountain centred at the origin, its height h being given by:

h cos rpr2 R , rFRŽ .maxhs . 7Ž .½0, rGR ,

The maximum height h of the topography is fixed at 0.4, which is about the largestmax
Žvalue allowed within the assumption of 2D motions made for the model the default

.fluid depth H being 1 . The radius R of the mountain is varied between 0.5 and 2, i.e.
between a and 4a.

2.3. ReÕiew of the main model assumptions

Before presenting the results of the simulations, it is useful to review the assumptions
made in the model and the appropriateness or otherwise of these approximations for the
types of oceanic vortices mentioned in Section 1.

A key element of the model is the restriction to quasi-2D motions, such that w<u,
Ž .Õ. Such a condition may be expressed Pedlosky, 1987 in the form wrU<h rL ,max s

where U is a typical horizontal velocity and L is a horizontal scale dimension of thes

seamount. The right hand side of this inequality condition can be expressed as
Ž .Ž . Ž . Ž .h rH HrL , with the values of HrL and h rH being much less than unitymax s s max

and order unity, respectively, for the isolated abyssal seamounts of interest here. For
Ž . Žexample, for Fieberling Eriksen, 1991; Goldner and Chapman, 1997 , Ampere Kunze`

. Ž . Ž .and Sanford, 1993 and Irving Shapiro et al., 1995 seamounts, the values of h rLmax s

are typically 0.07, 0.03 and 0.02, so that the 2D assumption wrU<1 is easily satisfied
for the flows in question.

The model also makes use of the b-plane assumption, with the dual implication in the
Ž .model that i the b-effect is dynamically important in determining the behaviour of the

Ž . Ž 2 .vortex as it approaches and encounters the topographic disturbance and ii the OO y
Ž .term in Eq. 4 may be neglected. With regard to the latter constraint, it is easily shown

Ž .that Eq. 4 can be written as:

fs 2V sin f q 2V cos f rR yq V sin f rR2 y2 q . . . 8Ž . Ž . Ž .Ž .e 0 e 0 e e 0 e

with V as the rotation rate and R as the radius of the Earth:e e

V s7.27=10y5sy1 , R s6360 km 9Ž .e e
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and f as a reference latitude. For a typical oceanic eddy flow domain of 1000 km in0
Ž .horizontal extent see, for example, Kamenkovich et al., 1996 and a vortex centred at a

Ž .latitude of 308, the second and third terms on the right hand side of Eq. 8 have values
of 0.28 f and 0.02 f , respectively. In the light of the earlier comments, such values0 0

confirm the validity of the b-plane approximation for the oceanic eddies under consider-
ation here.

The ridig lid approximation adopted in the model is valid for baroclinic oceanic
eddies when surface displacements are negligible compared with interface displacements
Ž . Ž .Gill, 1982 . For the cases e.g., Shapiro et al., 1995; Kamenkovich et al., 1996 in
which field observations are available, the ratio of surface to interface displacements is
typically much less than 10y2 .

It should be noted at this stage that the intention of the present paper is to report
Žmodel results that hold generic interest see also Carnevale et al., 1988; Van Heijst,

.1994 for an understanding of idealised vortex–topography encounters in the oceans and
atmosphere. Accordingly, the model configuration, though matching the oceanic condi-
tions discussed above, contains drastic simplifications that obviate direct comparisons
with specific oceanic eddies and eddy systems. One such simplification, for example, is
the restriction to cases for which the full water column is homogeneous; such a

Žconfiguration differs from that found with many relevant oceanic cases such as
.meddies, for example where buoyancy effects associated with the density difference

Žbetween the eddy and its surrounding waters are dynamically significant. In this regard,
Ž .it is noted that Kamenkovich et al. 1996 have shown in their models of the Agulhas

eddies that the behaviour of eddies approaching a submarine ridge may be quite
.different for baroclinic and barotropic cases.

3. Results of the simulations

Ž Ž ..In the simulations of the encounter of topography given by Eq. 7 by monopole
Ž Ž ..given by Eq. 6 described in this section, the radius R of the seamount and the value
of the Coriolis constant f are varied; all other parameters are kept constant.0

3.1. The parameters in the simulations

For f s0 the equator is at y s0, i.e. it passes through the centre of the seamount.0 eq
Ž .Varying f is, as can be seen from the formulation in Eq. 4 , equivalent to an encounter0

Ž . Ž .taking place north f )0 or south f -0 of the equator, the location of the equator0 0

being given by:

y syf rb , 10Ž .eq 0

where bs0.3 is used for this study. For the motion of the monopole in the absence of
Ž .topography, the value of the constant f is unimportant, as can be seen from Eq. 1 : the0

Coriolis parameter f only appears in the derivatives of the Jacobian operator. If the fluid
depth H is a function of the position, however, the value of f influences the evolution0

of the monopole and it is varied in the present study between f sy5 and f sq5.0 0
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The trajectory of the monopole is followed by a tracer initially placed at the centre of
the monopole, where the maximum of vorticity v is located. In most simulations themax

tracer remains at v . Only when the interaction with the topography-induced vorticitymax

introduces strong deformations of the vortex is the location of v displaced from themax
Žtracer in these cases, v is located near one of the boundaries of the domain, or at ormax

.near the topography , even if there is still a clear vortex to be seen.
ŽThe 20=20 domain is divided in 256=256 grid cells note that only a part of this

.domain is shown in the graphs , and values D ts0.05, bs0.3 and Res1000 are used
Ž .for all simulations presented here. The monopole is initialised at q3,y3 with as0.5

and Gs4.0. All runs end at Ts50, except for the cases with positive f and R)1.00
Ž .Section 3.4 which end at Ts100.

The choice of the parameters a and G for the monopole and f and b for the0

Coriolis parameter actually determine the length scale L and the time scale T used in0 0
Ž .the definition of the Reynolds number Section 2.1 . The size of the vortex is a natural

length scale in the problem at hand. Denoting dimensional variables with an asterisk,
this means that L s2 aU. Since f is varied, b can be used for the time scale:0 0

Ž U . U ŽT sbr 2 a b , with by choice bs0.3 here. Alternatively, the choice for G could0
Ž U .2 U .be used: T sG 2 a rG , but using b seems more appropriate.0

The range of f -values then determines a range of corresponding latitudes for0

terrestrial phenomena once a value for aU has been chosen. This follows from the
Ž .definitions of f and b in Eq. 8 :0

f U s f rT s2V sin f , b
U sbrL T s2V cos f rR , 11Ž .0 0 0 e 0 0 0 e 0 e

where the reference latitude f is obviously the latitude of the line ys0 in the0
Ž .simulations. Combining the two equations in Eq. 11 gives:

b f U
b0

f s f f s s PR P tan f . 12Ž . Ž .0 0 0 e 0U U U2 a b 2 a
U 5 ŽFor an oceanic vortex with L s2 a s10 m a typical size for e.g., a meddy;0

.Richardson, 1993a and bs0.3, it follows that for, say, f s158N: f s5.11, with the0 0

equator at y syf rbsy17.04 and time scale T s1.36=105 ss37.7 h. Simi-eq 0 0
Ž . Ž .larly, f f s108N s3.36 and f f s58N s1.67.0 0 0 0

In attempting to relate the model results to the behaviour of oceanic eddies, a key
Ž .parameter to evaluate see, for example, Kamenkovich et al., 1996 is:

2U U U
PsU rb L , 13Ž . Ž .az

U Ž . Uwhere U is a typical dimensional azimuthal velocity within the vortex and L aaz
Ž .typical dimensional length scale of the vortex. For the present study, in which the

Ž .values of the dimensionless parameters bs0.3 and Gs4.0 are kept constant, the
quantity P can be easily expressed in terms of b and G . The circulation GsHHvd As

U U Ž U . U Ž U .2EzPd s of the vortex can be estimated as G fU p L . With G sG L rT fromaz 0
Ž . U U Ž .the scaling see above , it follows that U fG L rp T . Inserting this and Eq. 11 inaz 0

Ž .Eq. 13 gives for the model simulations presented below:

PfGrbps4.24. 14Ž .
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Such a value compares favourably with the value Ps2.5 computed for the Agulhas
Ž .eddy Kamencovich et al., 1996 , indicating that the model parameter range matches

well with the oceanic eddy equivalent in this respect. Using for LU a typical meddy scale
at f s158N, as above, the typical azimuthal velocity for the vortex is UU f0.94 m0 az

sy1.

3.2. A seamount at the equator and to the south, respectiÕely

Fig. 1 shows the trajectories of the monopole when f s0 and f sy5 for four0 0

different sizes of the seamount, as well as the monopole’s trajectory in the absence of
any topography. The grey circles in these graphs indicate outer limits of the mountains;
dark grey shading is used for Rs0.5 and Rs1.5, light grey for Rs1.0 and Rs2.0.

Ž .If the seamount is located at the equator f s0 , it clearly disturbs the monopole’s0

trajectory somewhat, but the overall motion is quite similar for all R cases shown. In all
Žfour cases, the monopole actually crosses over the mountain, and the end point at

.Ts50 is roughly the same as for the no-topography case.
ŽFor an encounter taking place far to the south f sy5, which means that the0

.equator is at y sq50r3fq13.3 , there is a clear distinction in the way theeq
Žmonopole moves for RF1.0 and RG1.5. Large seamounts i.e. those larger in

.horizontal extent than the monopole appear to rebound the monopole before it has
reached the foot of the topography, similar to the rebound of a monopole encountering a

Ž .north–south ridge far to the south Van Geffen and Davies, 1999b . Even for Rs1.0

Ž .Fig. 1. Trajectory of the tracer at the maximum of vorticity of a Bessel monopole, initially at q3,y3 , that
Ž .encounters a seamount centred at the origin. The encounter takes place at the equator f s0, left panel and0

Ž . Ž .far to the south f sy5, right panel; the equator is at y sq50r3 . The seamount, given by Eq. 7 , comes0 eq

in four sizes and it is indicated by the shaded areas; the edges of these grey areas thus show the edges of the
respective mountains. The solid line is the monopole’s trajectory in the absence of any topography. All runs
ended at T s50. In this and all subsequent plots, only a part of the full computational domain is shown for
clarity.
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the monopole does not really reach the foot of the seamount, but the deflection is not so
strong that the monopole is pushed back to the southeast: the monopole manages to

Ždeflect around the topography which is, of course, impossible for the north–south ridge
.used by Van Geffen and Davies . For Rs0.5 the tracer at v just reaches the foot ofmax

the seamount, before the monopole travels around the mountain to the north.
The reason for this strong topographic effect becomes clear if the relative vorticity is

plotted, as in Fig. 2 for Rs1.0 and f sy5: strong relative vorticity is generated at0

and near the mountain from the very beginning. This process is similar to the generation
Žof relative vorticity at and behind a topographic feature in response to a flow over it as

.observed by, e.g., Verron and Le Provost, 1985 , where in this case the flow over the
topography is generated by the monopole, not externally. The effect can be understood

Ž .from the vorticity Eq. 1 if it is written in terms of potential vorticity v :p

D vq f
2sn= v , 15Ž .ž /Dt H

where DrDt is the material derivative. This equation says that, if viscous effects are
neglected for a moment, there is conservation of potential vorticity. Fluid approaching

Ž .the topography has no relative vorticity vs0 outside the vortex . When this fluid goes
up-hill H decreases. With fs f qb y more or less constant across the topography,0

conservation of potential vorticity then implies that the fluid gains positive relative
vorticity, which is anti-cyclonic in the southern hemisphere where the encounter is
taking place. Fluid initially atop the topography also has vs0 and when it descends it

Ž .acquires negative cyclonic vorticity. This can clearly be seen in the second panel
Ž .Ts5 of Fig. 2. The motion of the fluid across the seamount finds its origin in the

Ž .counter-clockwise anti-cyclonic motion of fluid around the monopole. The generation
< <of relative vorticity is stronger for larger f ; for f s0 there is almost no generation of0 0

relative vorticity at and near the seamount, as can be seen in Fig. 3.
Conservation of potential vorticity also means that when the positive vortex climbs

the topography, it becomes weaker and v increases again when the vortex movesmax
Ž . Ž .down-hill if v q f )0. In all cases discussed here, this is true, since v ts0 fmax max

< <11.8 and f F5, i.e. the vorticity at the centre of the vortex is relatively high compared0
< <with f . Conservation of mass of the fluid in the vortex means that when the vortex

climbs the topography it becomes wider, and when it subsequently descends the
Ž .topography it becomes narrower again. See Van Geffen and Davies 1999a; b for some

examples of this effect.
The time series in Fig. 2 shows clearly why the monopole is rebounded by the

topography: the positive vorticity on the seamount is so strong that it prevents the
Ž .monopole from climbing the topography, instead deflecting it to the north Ts15–20 ,

since the flow generated by this topography-induced vorticity is anti-cyclonic. Once the

Ž .Fig. 2. Contours of relative vorticity on the x, y-plane of a Bessel monopole, initially at q3,y3 , that
Ž .encounters a seamount of radius Rs1.0 shaded area with f sy5; the equator is at y sq50r3. The0 eq

Ž .monopole’s trajectory is given by the short-dashed line in Fig. 1 right . Contours are drawn at intervals of 0.1
w xin the range y2.0; 2.0 ; positive contours are solid, negative dashed, and the zero contour is dotted.
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Ž .Fig. 3. Contours of relative vorticity as in Fig. 2 but for f s0, i.e. for a seamount at the equator y s0 .0 eq
Ž .The monopole’s trajectory is given by the short-dashed line in Fig. 1 left .

monopole is free from the topographic influence, it can continue its b-induced motion to
the northwest, affected of course by the vorticity in the Rossby waves and the
topography-related vorticity.

The anti-cyclonic motion induced by the vorticity at the seamount moves the negative
Ž .vorticity generated southwest of the mountain Ts5 in Fig. 2 to the east. In the last

Ž .panel of Fig. 2 Ts25 , this patch of negative vorticity is free from the topography and
has some positive vorticity south of it. This positive patch strengthens in the subsequent

Ž .evolution not shown and together with the negative patch forms a dipolar structure that
moves south of the topography to the west.

For seamounts larger in lateral size, the topography-induced positive vorticity is
stronger and makes the negative patch move around the seamount faster. This negative
patch reaches the monopole before the latter has had time to travel to the north and the
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pair forms a dipolar structure that moves away from the mountain, as can be seen in Fig.
4 for some stages in the evolution of the monopole for Rs2.0 and f sy5. Between0

about Ts10 and Ts20, the monopole performs as part of that dipolar structure a loop
Ž .back to the southeast, then travels to the northeast see Fig. 1 . The dipolar structure is

not permanent: it falls apart and the negative patch goes to the southwest. The monopole
appears not to be able to resume its northwestward b-induced motion because of the
dominant influence of the ambient vorticity. Indeed, the monopole travels south again,

Ž .reaching at Ts50 a location close to where it started Fig. 1 . The topography is a clear
barrier to the monopole and the monopole is not deflected around it, as was the case of
the RF1.0 mountains. For a seamount of Rs1.5 the process is similar to that of
Rs2.0, but the monopole manages to go more to the north than for Rs2.0, as Fig. 1

Fig. 4. Contours of relative vorticity as in Fig. 2 but for a seamount of radius Rs2.0. The monopole’s
Ž .trajectory is given by the dash-dotted line in Fig. 1 right .
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shows. The reason is that the topography-induced negative vorticity is less strong and
the dipolar structure formed breaks up earlier for Rs1.5.

The trajectories of the monopole for f between 0 and y5 are plotted in Fig. 5 for0

the four seamounts separately, for otherwise-identical conditions. These graphs show
that the more negative f is, the larger is the disturbance of the monopole’s trajectory,0

especially for large seamounts. A mountain with Rs2.0, which is about four times the
Žsize of the monopole the monopole grows somewhat in size as it evolves due to viscous

.effects , effectively blocks the monopole even for moderately negative f . A somewhat0
Ž .smaller seamount Rs1.5 initially blocks the monopole at strong f -0, but the0

Ž .Fig. 5. Trajectory of the tracer at the maximum of vorticity of a Bessel monopole, initially at q3,y3 , that
encounters a seamount centred at the origin. The seamount, indicated by the shaded areas, comes in four sizes.

Ž . Ž .The encounter takes place at the equator f s0 or to the south f -0 ; the trajectories for f s0 and0 0 0

f sy5 can also be seen in Fig. 1. All runs ended at T s50.0
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Ž .monopole is able to move around the mountain eventually after Ts50, not shown . In
both large seamounts, the influence of the topography on the monopole’s trajectory is
notable, even for low f -0. Smaller seamounts, up to twice the size of the monopole,0

also disturb the monopole’s trajectory, but considerably less and the end points at
Ts50 lie close together, with the exception of the case Rs1.0 and f sy5, which0

shows that even relatively small seamounts can affect significantly the monopole’s
evolution if the encounter takes place far to the south of the equator.

3.3. A small seamount north of the equator

Since there is a clear distinction between the effect on the monopole’s evolution of a
Ž . Ž .small RF1.0; this section and large RG1.5; Section 3.4 seamounts in the northern

hemisphere, the discussion of these cases is split in two parts.
Fig. 6 shows for the small seamounts the trajectories for f between 0 and q5. In all0

these cases, the monopole climbs the topography, moves southwest of the top and leaves
Ž .the seamount again without significant deformation. For the smallest seamount Rs0.5
Ž .considered here the encounter leads to only a small difference in the end points Ts50

for all f -values.0

For Rs1.0, there is a notable difference between low and high f -values. For the0

lowest f -values the trajectories are quite similar, though the monopole makes a wider0

turn around the top of the mountain for larger f . If the seamount is located further to0

the north, with f sq2 or f sq3, then the monopole is deflected more by the0 0

vorticity generated at the seamount: the monopole moves along the south-side and is
Ž .free from the topography again at the south west side, after which it resumes its

b-induced motion to the northwest; the end point is in these cases located further to the
west than expected.

Fig. 6. Trajectories of the tracer at the maximum of vorticity as in Fig. 5 but for the two small seamounts at the
Ž . Ž . Ž .equator f s0 and to the north f )0 . All runs ended at T s50; for f sq2 at Rs1.0 right graph the0 0 0

end point lies just outside the left border at xsy3.16.
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Since f is positive in these cases, conservation of potential vorticity implies that the0
Ž .flow across the topography caused by the monopole’s rotation and motion results in

negative vorticity being generated above it and positive vorticity behind it. This is the
reverse of what is seen in Fig. 2, but since the motion is now in the northern hemisphere,
the vorticity of the fluid above the topography is also anti-cyclonic in sense. This motion
forces the monopole to go more to the south of the top of the seamount. For a mountain

Ž .far to the north f sq4 and f sq5 , the anti-cyclonic motion appears to be so0 0

strong that the monopole is dragged further around the top than for lower f -values,0

before it manages to move freely again. The monopole’s direction of motion caused by
the ambient vorticity is then first northeast, before going to the northwest again. Fig. 7
shows as an example a time sequence of vorticity plots of the f sq5 case.0

3.4. A large seamount north of the equator

The simulations discussed in Section 3.2 showed that in the southern hemisphere, the
Ž .large-scale seamounts RG1.5 affect the monopole’s evolution more than their rela-

Ž .tively small counterparts RF1.0 . This is also the case if the seamounts are in the
northern hemisphere, but the resulting evolution is quite different from the southern-
hemisphere cases. In the southern hemisphere, the monopole is seen to rebound from the
topography in some cases, after which the monopole is either deflected around or

Ž .completely blocked by the topographic barrier see Fig. 5 . In contrast, in the northern
hemisphere the monopole can be permanently or temporarily trapped on the seamount,
as is shown below. Because of this aspect of the influence of a seamount on the
monopole, all northern-hemisphere runs discussed in this section, i.e. those for the
seamounts with RG1.5, are continued until Ts100 to determine the fate of the
monopole.

Ž .At first, the motion of the monopole is as in Fig. 6 which is for RF1.0 and the
Ž .vortex reaches the foot of the topography at the east– southeast side. The monopole

then climbs the seamount and turns to the west, to pass south of the top, as in Fig. 6 for
the small seamounts. What happens next depends very much on the value of f in0

combination with the horizontal dimension of the seamount.
Consider first a mountain with Rs1.5. The monopole’s trajectory for f s0 is0

shown by a solid line in Fig. 5, in which case v stays east of the top of themax

topography. For f sq1 the monopole makes a big loop around the top to the north,0

after which it performs two small loops, before leaving the seamount, as can be seen in
Fig. 8. The subsequent motion is complicated and shows some small loops and bends,
caused by the interaction with the topography-induced vorticity, but the overall motion

Ž .of the monopole is to the northwest. For f sq2 see Fig. 8 , the trajectory is similar,0

though with a wider loop around the top of the seamount and some small loops near the
foot at the northern side. The subsequent motion to the northwest is less clear than for
f sq1 and it shows more small loops and bends, because the ambient vorticity field is0

stronger.

ŽFig. 7. Contours of relative vorticity as in Fig. 2 but for f sq5, i.e. for a seamount far to the north the0
. Ž .equator is at y sy50r3 . The monopole’s trajectory is given by the short-dash-dotted line in Fig. 6 right .eq
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Fig. 8 also shows the trajectory for f sq5, i.e. with the seamount located very far0

to the north. In this case, the monopole is deflected considerably by the topography-in-
duced vorticity and it leaves the seamount quite quickly, without significant penetration
into the zone above the seamount itself. The monopole subsequently moves in a
northwest direction, until about Ts40. It then makes a rather sharp turn to the east, as a
result of the interaction with the ambient vorticity field. At this point, the vortex is
deformed considerably and after Ts45.5 the maximum of vorticity is no longer located

Ž .at the centre of the still clearly existing vortex, but elsewhere in the domain. The
vortex remains coherent, restores its circular form and continues its b-induced motion to

Žthe northwest. For f sq1, v is at the vortex centre until Ts81.2 and for0 max
.f sq2 until Ts97.9.0

What happens for the intermediate f -values is quite different from these cases. For0

f sq3, the monopole is trapped above the topography, as the trajectory plotted in Fig.0

8 shows: the monopole circles first three times around the top of the seamount and then
follows a path around the top with several small loops and bends. A similar trajectory is
followed for f sq4, except that in this case, the monopole eventually detaches from0

the seamount and moves freely again. To show the looping motion of the vortex more
clearly, Fig. 9 shows its trajectory with time plotted vertically.

The peak in the trajectory in f sq3 in Fig. 8, just north of the topography, at about0

Ts80, is not a sharp turn in the monopole’s path, but a result of the projection of a
small loop made by the monopole. Shortly after this, v is no longer located at themax

centre of the vortex and somewhat later the vortex has become indistinguishable from
Ž .the ambient vorticity. For f sq4 Fig. 9 , the vortex almost undergoes the same fate:0

after Ts65.6, v is away from the tracer location and the vortex is difficult tomax
Ž .recognise. But the structure of the vortex is restored again and v is roughly back atmax

Fig. 8. Trajectories of the tracer initially at the maximum of vorticity as in Fig. 5 but for the Rs1.5 seamount
Ž .north of the equator, for selected f -values. All runs ended at T s100; for f sq5 left graph the end point0 0

Ž .lies just outside the left border at xsy4.5. The f s0 case is plotted in Fig. 5 until T s50.0
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Fig. 9. Trajectory of the tracer initially at the maximum of vorticity of a Bessel monopole that encounters a
seamount of Rs1.5 centred at the origin, with f sq4. Time is plotted vertically and black dots are placed0

along the trajectory at intervals of DT s2.5; the run ended at T s100. The grey areas at the top and bottom
plane indicate the location of the topography and so does the dashed circle at T s50. The arrow points to the
black dot of T s50.

the tracer location after Ts82.3, followed by a motion away from the topography. Fig.
10 shows vorticity contours of the last stages in the evolution of this case.

When the monopole encounters a seamount having Rs2.0, the trajectories of the
Ž .tracer initially placed on the monopole plotted in Fig. 11 are similar to those for the

Rs1.5 counterpart case. But there are some notable differences, depending on the
f -value.0

Ž .For f sq1 at Rs2.0 Fig. 11 , the monopole performs a few loops above the0

seamount before leaving it at the north side, followed by a motion to the northwest with
Ž .several small loops, as for f sq2 at Rs1.5 Fig. 8 . In both these cases, the vortex0

retains its structure throughout the run, without severe deformations. That is also the
Ž .case for f sq2 at Rs2.0 Fig. 11 , where the monopole is trapped for some time0

Ž .above the topography, but eventually at about Ts90 , it leaves the seamount; the
tracer and v are at the same point throughout the evolution.max

Ž .For f sq3 at Rs2.0 Fig. 11 , the monopole is trapped on the topography, as it is0
Ž .for the same f -value at Rs1.5 Fig. 8 . The deformations of the vortex are at Rs2.00
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Fig. 11. Trajectories of the tracer initially at the maximum of vorticity as in Fig. 5 but for the Rs2.0
seamount north of the equator. All runs ended at T s100; for f sq2 and f sq5 the end point lies just0 0

Žoutside the left border at xsy4.1 and xsy4.2, respectively. The f s0 case is plotted in Fig. 5 until0
.T s50.

somewhat stronger and v leaves the tracer position a little earlier than for themax

Rs1.5 case. Both large seamounts also give similar trajectories for f sq4, but the0

deformations are clearly larger on the larger topographic feature. But there is a big
Ždifference. At Rs1.5, the vortex restores its structure and v returns to the tracermax

. Ž .position and eventually the monopole leaves the topography see Fig. 10 . At Rs2.0,
on the other hand, the deformations are too strong and the vortex disintegrates above the

ŽFig. 10. Contours of relative vorticity as in Fig. 2 but for Rs1.5 and f sq4 i.e. the equator is at0
.y sy40r3 . The monopole’s trajectory is given in Fig. 9.eq
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Table 1
Summary of the fate of a Bessel monopole that encounters a seamount of radius RG1.5 at the northern

Ž .hemisphere f )0 , as discussed in Section 3.4

f Fate at Rs1.5 Fate at Rs2.00

q1 crosses crosses after few loops
q2 crosses trapped™ leaves after all
q3 trapped™destroyed trapped™destroyed
q4 trapped™ leaves after all trapped™destroyed
q5 crosses crosses, returns™destroyed

topography. The tracer is then simply displaced by the ambient vorticity and moves
away from the topography after about Ts93.

Ž . Ž .For f sq5, the trajectories at Rs1.5 Fig. 8 and Rs2.0 Fig. 11 are initially0

similar: the monopole cannot climb the topographic barrier and is deflected around the
south side and thereafter travels to the northwest. Subsequently, the vortex makes a

Ž .rather sharp turn to the east at Rs2.0 this occurs at about Ts35 , at which point the
deformation of the vortex becomes so strong that v moves away from the tracermax

Ž .location. The still-visible vortex at Rs1.5 then travels again to the northwest Fig. 8 .
But at Rs2.0, the vortex turns to the southeast and encounters the topography again at
about Ts50. As a result of the topographic influence it performs a few small loops and
begins to climb the seamount. In that process, the deformations are too strong for the
vortex and it disintegrates. The tracer is then simply displaced by the ambient vorticity
field and is eventually found west of the mountain.

Table 1 summarises and classifies the results for the two large seamounts in the
northern hemisphere in terms of the fate of the monopole as it encounters the
topography.

4. Concluding remarks

In order to simulate the encounter of a class of oceanic eddies with isolated
seamount-like topographic features, a 2D numerical model has been utilised to deter-
mine the possible outcome of such encounters for an incident monopolar vortex and a
circularly symmetric seamount. The investigation has considered specifically the influ-

Ž . Ž .ence of i the north–south location where the encounter takes place, and ii the
horizontal scale of the topography, for otherwise-identical conditions.

ŽThe monopole, with initial radius as0.5 it grows somewhat due to viscous effects
. Ž .as time goes on has positive vorticity — i.e. it is cyclonic anti-cyclonic in sense in the

Ž .northern southern hemisphere. This vortex moves to the northwest as a result of the
b-effect, where it encounters an isolated, cosine-shaped, axisymmetric topographic

Žfeature, representing a seamount, with a maximum height of h s0.4 relative to themax
.default fluid depth Hs1 and a radius R varying between Rsas0.5 and Rs4as

Ž .2.0. This seamount is located somewhere between far south f sy5 and far north0
Ž .f sq5 of the equator, the equator being located at y syf rb ; for this study0 eq 0
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bs0.3 and f is varied. If the monopole is to model a real-life vortex in the Earth’s0

ocean with a diameter of, say, 105 m then the scaling is such that f sq5 represents0
Ž .roughly a latitude of 158N with y fy17 Section 3.1 .eq

The results presented in the present paper show that there is a distinction in the
possible outcome of the encounter depending on whether the seamount has a horizontal

Ž . Ž .scale comparable with that of the vortex RF1.0 or larger RG1.5 . And there is also
Ž .a difference between encounters taking place in the northern f )0 and southern0

Ž .f -0 hemisphere, especially if the distance to the equator is large.0
Ž .Relatively small seamounts RF1.0 in the southern hemisphere or at the equator

Ž .Fig. 5 affect the monopole’s trajectory slightly, and the position of the vortex some
time after the encounter is similar to the position the monopole would have had if no

< <topography had been present; the difference in these positions increases for larger f ,0
Ž .i.e. further south. For the larger seamounts RG1.5; Fig. 5 , there is some difference in

the monopole’s trajectory if f is not too strong, in which case the monopole’s eventual0

position is further to the north than if there is no topography. If the latter is located far to
the south, however, the monopole can be rebounded along its direction of approach and
the seamount acts as a complete barrier to the monopole. In all the encounters taking
place in the southern hemisphere or at the equator, the monopole retains its integrity,
though there is some deformation of the monopole as it moves. And if the monopole
passes or crosses the topography, it does so east of the top of the seamount.

Ž .For seamounts in the northern hemisphere f )0 comparable in size with that of0
Ž .the vortex RF1.0 , the monopole crosses the seamount to the west of the top without

Ž .significant deformation Fig. 6 ; the ‘‘end point’’ of the vortex’ motion is roughly the
Ž .same as without a seamount present. For larger seamounts RG1.5; Figs. 8, 9 and 11

north of the equator the encounter leads to complicated trajectories and strong deforma-
tions. At low latitudes, the monopole is deformed severely but survives the crossing and
then follows a trajectory with several small loops and bends to the northwest. At higher
latitudes the vortex can be trapped by the topography, with a trajectory consisting of
orbits around the top, with small loops superimposed on its motion. In some cases the
vortex is able subsequently to escape from the topographic trapping, while in other cases
it is shown to be destroyed by the interaction with the topography-induced vorticity. For
a seamount located even further to the north, the topography-induced vorticity is so
strong that the monopole is deflected along the south side of the mountain to the west,
with considerable deformations and a complicated trajectory. It has been shown that the
monopole is also able to turn to the southeast and again encounter the topography, with

Ž .subsequent disintegration of the vortex, if the topographic feature is very large Fig. 11 .
The simulations discussed in the present paper have been carried out with a positive

Ž . Ž .monopole, i.e. one that has cyclonic anti-cyclonic vorticity in the northern southern
hemisphere, and which travels to the northwest. For a negative monopole, which travels
to the southwest, cyclonicrnorth and anti-cyclonicrsouth have to be interchanged.
Hence, a negative monopole can be rebounded in the northern hemisphere and trapped
on the southern hemisphere by a seamount, and there is no basic difference between
positive and negative vortices. At least that is the situation in numerical simulations as
those presented here; in the laboratory it is difficult to have stable negative vortices
Ž .anti-cyclones on the northern hemisphere; see Kloosterziel and Van Heijst, 1991 .
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The monopole used in the present study has a single signed vorticity distribution, i.e.
it has a non-vanishing circulation. A so-called isolated monopole, which has a total

Ž .circulation HHvd A equal to zero, with a positive negative core also travels to the
Ž .northwest southwest due to the b-effect, but along a trajectory more to the north

Ž . Ž .south than the non-isolated monopole Carnevale et al., 1991; Van Heijst, 1994 . This
difference is caused by the presence of an oppositely signed ring of vorticity around the
core for the vortex, part of which is shed in the form of small vortices as the monopole
moves, hence the interaction with the ambient vorticity field will be different, though the

Ž .basic interaction mechanism is the same see Carnevale et al., 1991 ; this matter has not
been investigated any further in this study.

The precise structure of the topographic feature has some influence on the outcome
Ž .too, of course. The seamount used here, given by Eq. 7 , has the profile of half a

Ž .cosine: h cos rpr2 R . A topography with a less steep slope near its foot — such asmax
w Ž . xa full-cosine function h cos rprR y1 r2 — allows the monopole to climb a littlemax

further towards the top. Near the top, however, such a topographic profile is steeper
again than the half-cosine counterpart and the ‘‘effective’’ size of the full-cosine

Ž .mountain is therefore somewhat smaller than that of the half-cosine of Eq. 7 . Thus, the
range of possible outcomes of the encounter shifts a little to larger seamount radii, but
the different regimes are similar.

Ž .For a negative h , the topography is obviously a pit. If the positive monopolemax

encounters the pit from the southeast, the effect of the pit on the monopole’s evolution
will be similar to the effect of the mountain discussed in Section 3, but with north and
south of the equator interchanged: a pit in the northern hemisphere can rebound the
vortex, and the monopole can be trapped by a pit in the southern hemisphere. The details
of the evolution of the monopole will no doubt be somewhat different though. Fig. 12

Ž .Fig. 12. Trajectories of the tracer at the maximum of vorticity of a Bessel monopole, initially at q3,y3 , that
Ž .encounters a pit of radius Rs1.0 centred at the origin shaded region . The encounter takes place at the

Ž . Ž . Ž .equator f s0 , in the northern hemisphere f sq5 and in the southern hemisphere f sy5 . The dotted0 0 0

curve in both graphs shows the monopole’s trajectory if there is no topography. All runs ended at T s50.
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Ž .shows as an example a pit with the half-cosine profile given by Eq. 7 with radius
Rs1.0 and h sy0.4 at three latitudes. In the equatorial case, the monopole crossesmax

Ž .the pit and ends up more to the west than in the case of a mountain cf. Fig. 5 . In the
northern hemisphere, with f sq5, the pit deflects the monopole in a way similar to a0

Ž .mountain on the southern hemisphere with f sy5 Fig. 5 . And if the pit is in the0
Ž .southern hemisphere f sy5 , it traps the monopole, unlike for the mountain of the0

Ž .same radius in the northern hemisphere Fig. 6 , where the monopole crosses the
mountain. The reason for the latter difference is that as the monopole descends into the
pit it become narrower and stronger, whereas it becomes wider and weaker as it climbs
the mountain. A monopole crossing a pit is thus less susceptible to deformations than a
monopole crossing a mountain under otherwise-identical conditions. The example shows
that the pit topography case deserves a study of the full parametric range of values for f0

and R, but that falls outside the scope of the present paper.
In summary, what happens to a monopolar vortex when it encounters the topographic

feature depends mostly on whether the encounter takes place in the northern or southern
hemisphere, and on the lateral size of the topography relative to the size of the vortex:
the bigger the seamount andror the further away from the equator, the more dramatic
the influence can be on the monopole’s evolution, leading to the possible destruction of
the vortex.
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