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In this paper we describe results of a study of the two-dimensional motion of a distributed
monopolar vortex in a viscous incompressible fluid in a bounded rectangular domain with free-slip
and no-slip boundary conditions. In the case of free-slip walls the motion of the vortex center can
be satisfactorily modelled by a single point vortex in an inviscid fluid. Comparison of the results of
both models reveals a good quantitative agreement for the trajectories of the vortex centers and of
the period of one revolution around the center of the domain, for moderate viscous effects
(Re=1000 and morg In a domain with no-slip walls the distributed monopolar vortex moves to the
center of the domain along a curved but not smooth trajectory due to the interaction of the monopole
and the wall-induced vorticity. €1996 American Institute of Physids$$1070-663(96)01009-4

I. INTRODUCTION but it can be applied in the method used for the computations
i . . with the distributed monopole, so that the effect of no-slip
Two-dimensional(2D) vortex motion in bounded do- /s can be studied too
mgmsz.has been stud|§d for quite a long tirfiillat™; In the next section the vortex models used in the numeri-
Muller”; see also Saffman Traditionally, the attention was .5 simuylations are discussed. The results of these simula-
concentrated on the motion of point vortices in an '”V'Sc'dtions for free-slip and no-slip domain boundaries are pre-

fluid with so-called “free-slip” walls: the normal component ggnteq in Secs. Il and IV, respectively. The paper ends with
of the velocity is equal to zero at the wall, with no restriction 5 me general conclusions.

on the tangential velocity. An elegant mathematical tech-

nique based on Green’s functigSaffmarf) permits us to

write a set of ordinary differential equations for the motion

of point vortices inside any domain. These equations expreéé MODELS FOR THE VORTEX MOTION IN A
in a rather general and concise manner a very extensive claRECTANGULAR DOMAIN

of phenomena. One important conclusion is that a single e non-stationary 2D flow of an incompressible vis-

point vortex, although immovable in an unbounded fluid ateqs fluid with distributed vorticityw is governed by the
rest at infinity, placed in a bounded domain will move due ton5yier-Stokes equation here  written in  the

the velocity field induced by the system of its image vortices.(w ) —formulation:
On the other hand, comparatively little has been done to
clarify the influence of viscous effects on the motion of ini- Jw 2 2
. SRR . : —+ = =—
tially compact vorticity distributions in a bounded domain. In at Yo )=rVo, o Ve, @

this paper we provide a cqmparanve ana!y5|s of thg mOtlor\‘/vhereJ and V2 are the Jacobian and Laplacian operator,
of a point vortex and of a circular vortex with a non-singular

initially axisymmetric vorticity distribution(henceforth re respectively,y the streamfunction, and the kinematic vis-
Y y“ . y distriot . ~, cosity. The numerical scheme used to solve the non-linear
ferred to as “monopole) in an inviscid and viscous fluid,

) . ) Lo . system(1) is a finite difference method similar to the one
respectively, confined in a rectangular domain with free—shpused by Orlandf. The main difference with Orlandiis that

walls. Such a rather simple and _bg_s!c configuration offers Bither free-slip or no-slip boundary conditions are imposed at
better understanding of the possibilities of both models. the walls

In ph_yS|caI rea_hty, howev_er., free-slip walls are not Two initially compact axisymmetric distributions of vor-
present since there is e}lways' ff!ctlon at the WaII§: Hence, Onﬁcity in a patch of radiusr, and centered around
would want to apply a “no-slip” boundary condition: at the X9 y{) are used, namel
wall the velocity of the fluid equals zero. This condition *"! Vi ' y
implies generation of oppositely-signed vorticity near the  w(r)=wg, (29
wall, leading to a flow evolution different from the case of
free-slip walls(see, e.g., Orlan}i Verzicco et al®). A no- ()= woJo(Kr/ro), (2b)
slip boundary condition cannot be applied to point vorticescorresponding to a Rankine vortex and a Bessel-type mono-

pole, respectively, with zero vorticity outside the palck.,

_ 2 (y_ y(0N2 _ (02
¥Present address: Geophysical and Environmental Fluid Dynamics Laboraf9(r>r0) _(_)]' Hefre ro=(x=x3")"+ (y y1)% and
tory, Department of Civil Engineering, University of Dundee, Nethergate, K=2.4048 is the first root of the equatialy(k)=0. The

Dundee, DD1 4HN, United Kingdom. third vortex model used is
YAlso at the Institute of Hydromechanics of the National Academy of Sci- S

ences, 252057 Kiev, Ukraine. o(r)=wgexp —r</R%), (20
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usually referred to as a Gaussian monogoleLamb vortex;
see Saffman and Bak®rwhereR is the length scale of the
vortex, which is set equal tR=r,. In all three cases the
value of wg is chosen such that the total initial intensity of
the vortex is equal td';. After making(1) dimensionless in
the usual way, the Reynolds number Re appears, which can
be written as Re 'y /v.

The motion of a point vortex of constant intenslty in
an inviscid flud in a rectangular domain ;
—asx=a,—b=<y=b bounded by free-slip walls was stud- 3 A
ied early this centunyVillat!; Muller?); these publications sz 0123
provide the analytical solution of the closed trajectory of the
vortex and of the period of a full revolution. The equationsFIG. 1. Trajectories for one full revolution of a Bessel monop@elid
of the point vortex motion can, expressed in its coordinate%”es) and a point vortexdashed lingsin a square domain starting either at

b . in the f f il . . 1,0) or at (2,0); the initial positions are marked with a cross. For the Bessel
(Xl'yl)’ e written in the form of a Hamiltonian system: monopole the Reynolds number isR&000. A Rankine or Gaussian mono-

pole follows the same trajectory as the Bessel monopole. See also Table I.

dx; dH; dy;  dH,; 3
dt  ay,’ dt  oxg’ @
lll. RESULTS FOR A DOMAIN WITH FREE-SLIP WALLS

—_— o (0) (0 . . :
with initial conditionsx;=X;"’,y;=y;". Here If a free-slip condition is applied to the walls of the

r domain, a comparison between the motion of a point vortex
Hl(xl,yl):——1|n[p(2x1+2a)+ﬁ2y1+2b)], (4) and a distributed monopole is possible. Consider first the
87 case of a point vortex and a monopole located initially at

where o(2) and (z) are the Weierstrass rho functions (1'0 @nd with Reynolds number Rel’; /»=1000.

(Abramowitz and Stegui with half-periods 2, 2ib and The results of the simulations, presented in Fig. 1 and
2b, 2ia, respectively ' Table I, show that the trajectory and the period of one full

The trajectory of the vortex in the rectangle is a cIosedreVOIUtion of both the point vortex and the (_:enter of the

curve defined by monopole as well as the moments of crossing the corre-
spondingx andy-axes agree very well for all three types of
Hy(Xg,Y1) = Hl(x(1°),y(l°)). (5) distrit_)uted monopoles._ T_his is especially sqrpris_ing since in
the viscous cases the initially compact vorticity is gradually

For the initial position of the vortex not too close to the walls Spread over a larger area and hence the vorticity maximum
the trajectory resembles an ellipse drawn around the centélecreases in time, as shown in Fig. 2. Initially the diameter
of the rectangle. The period of revolution can be calculatedf the monopoles is 1/6-th of the domain size, but after half
explicitly in the form of an ultra-elliptic integra(Villat'). & revolution (=t,; see Fig. 2 the diameter of the mono-
The trajectory of the point vortex is independent of the valugPoles is already larger than 1/3-rd of the domain size and the
of I'y, but the period of one full revolution is proportional to maximum of vorticity has decreased so much that one can no
. longer speak of vorticity being concentrated in a small patch.

To follow the trajectories of the distributed monopoles aA point vortex would thus seem to be a bad model for the
single passive tracer is placed at the initial center of theevolved monopoles, yet the motion of the point vortex and
monopole and it is the trajectory of this tracer which isthe center of the monopoles are in good agreement for one
shown in the figures. A tracer is used because the maximurigvolution.
of vorticity can only be determined at grid points, so thatthe ~ The results in Table I show that the orbital period of the
path of the maximum of vorticity is not a smooth line and initially compact monopolar vortex is only weakly dependent
can thus not easily be compared with the point vortex’ tra-on the initial vorticity distribution. Figure 2 shows that the
jectory. Since the fluid is considered to be incompressible gecay of the three monopoles is quite similar once the first
radial motion with respect to the monopole’s center is notquadrant has been crossed: the vorticity profiles look almost
expected and thus the tracer is expected to remain on the
max!mum of vorticity, at least as long as there I$dEaI.) TABLE I. Timest,,t,,t3, andt, at which the center of the vortex initially
maximum. When the tracer moves away from the MaximumMycateq at (1,0) successively crosses the coordinate axes for the point vortex
it starts making circular orbits around the maximum as theynd the three distributed monopoles. The Reynolds number is1860.
monopole moves through the domain. If this happens, it ighe trajectories of the point vortex and the Bessel monopole are shown in
mentioned in the text. Fig. 1.

The numerical simulations reported in the paper are per-

. " . ) ; Vortex ty t, t3 ts

formed in a square domain with=b=3, and the intensity _

of the vortices att=0 is I';=1. In the finite difference go'”tl %53-‘:3 119:3%2 22%‘1-16 33%132

. . . . - esse . . . .

method the grid used has 128 cells_m either dlre_ctl_cm, Rankine 93.9 188.9 285.2 384.1
Ax=Ay~0.Q47) and the initial radius of the distributed gayssian 94.0 189.3 286.6 386.8
monopoles ig (= 0.5.
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TABLE Il. Timest,,t,,t3, andt, at which the center of the Bessel mono-
pole initially located at (1,0) successively crosses the coordinate axes for
different Reynolds numbers Re. The timgsandt, for Re=200 are not
given since then the tracer initially at the center of the monopole is no
longer located at the maximum of vorticity; see the text on this. The values
for Re=1000 are also given in Table I.

Re t, t, ts ty
200 95.3 202.3 — —
500 94.1 190.7 293.0 404.8
1000 93.8 188.4 284.6 383.3
2000 93.6 187.6 282.0 377.0
5000 93.6 187.3 281.1 375.0
10000 93.6 187.3 281.0 374.6
20000 93,5 187.3 280.9 374.6
@ 93.6 187.0 280.7 374.3

For Re=200 the difference with respect to R4000 is
att, about 7%. About at that time the tracer initially placed
at the maximum of vorticity gradually moves away from the
maximum and starts rotating around that maximum as the
maximum goes to the center of the domain. Since the maxi-
mum of vorticity can only be determined at grid points the

] S ) moment of time it crosses an axis cannot be found exactly,
FIG. 2. Profiles of the vorticity distribution along the line through the centerb t | i h th id dinate of th
of the vortex parallel to the nearest wall at initial titret,=0 and at times u (_)n y as arange o |me§ when the g _'COOI’ Inate of the
t=t,,t,,t3,t, given in Table I.(a) The Bessel-type monopoléb) The maximum equals the coordinate of the aXIS.tA# 3574
Rankine vortex(c) The Gaussian monopole. For all three monopoles thethe maximum of vorticity crosses the negativ@xis and the
Reynolds number is Re1000. positive x-axis is crossed at,=654+30. At t=1000 the
maximum of vorticity is one grid point away from the center
(i.e., about 0.04)and the vorticity is spread over the entire

the same at=t, and later on. For the case of the Rankined in almost v th ; £ vorticity is 0.0061
monopole the decrease of the maximum of vorticity is pre- omain aimost evenly: the maximum of Vorticity 1S ©.

dicted very well(with a difference of about 0.5%by the (att=0 it is 2.9448; see Fig.)2

solution of Terazawhiand NekrassoWfor an infinite do- All'in all one can state that for Reynolds numbers larger
main, which iS®ma/ wo= 1—exp(—r§/4vt). than 500 the motion of the point vortex is in good agreement

As time goes on after one revolution, the vorticity is With that of the center of the distributed monopole. For lower
spread more and more and the maximum of vorticity spiraldkeynolds numbers the viscous decay of the vortex is too fast
to the center of the domain. The Bessel monopole, for infor the vortex to complete one revolution with a clear maxi-
stance, has completed one revolutiontat383.3 when it mum of vorticity and the point vortex is not an adequate
crosses tha-axis inx=0.967, and it has completed a secondmodel.
revolution at t=826.8 when it crosses the-axis in If the initial position of the monopole and the point vor-
x=0.761. tex is shifted nearer to the wall, the quantitative difference in

Table Il shows the results for a Bessel monopole in theseriods becomes more significant, even for=R€©00: for

range of Reynolds numbers from 200 to 20,000, and & comhe Bessel monopole and the point vortex, respectively, both
putation without viscous effect§i.e., (1) with »=0]. For  initially centered at (2,0) the time for half a revolution is

Reynolds numbers larger than 1000 the period of one reVOThaH(BesseI): 133.3 andT,.((PV)=127.8(a difference of

Iut|oq decreases somewnhat: for Iarge Re the Bessel. MONYhout 4% and for a full revolutionT ¢, (Bessel}=305.1 and
pole is about 2% faster than the point vortex. The trajectoryl. P\/)= 255.6 (ab 19% diff Fi 1 sh
f th e i | to that of th int vortex f fun(PV)= .6 (about 6 differenge Figure 1 shows
of the monopole lies closer to that of the point vortex for . i ) .
the respective trajectories. A Rankine monopole moves

higher Reynolds numbers, as expectgwt shown: for ; . .
Re=1000 the center crosses tkeaxis after one revolution along a trajectory quite similar to that of the Bessel mono-

atx=0.967 and for Re 2000 atx=0.997. Especially during POle, but somewhat slowerTy,¢(Rankine)=135.3 and
the first half of a revolution the viscous decay does not affect fu(Rankine)=312.8. The trajectory of a Gaussian mono-
the motion very much and a point vortex is a good model forPole lies somewhat inside that of the other two monopoles
the distributed vorticity. For Re 500 the Bessel monopole is and it is some 10% slowerTp,((GaussianyF143.2 and
only about 1% slower than for Rel000 att,, but after that Ty, (Gaussiany=335.7. Clearly the effect of the nearby wall
the vortex decays more and more andathe difference is on the distributed vorticity is quite large and depends on the
about 6%. exact initial vorticity distribution.
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FIG. 3. (a) The path of a Bessel monopole, initially eithe(&j0) or at(2,0),

in a domain with no-slip walls is shown by a solid and dashed line, respec-
tively, for t=0 until t=500. Only a part of the full domain is shown for
clarity. The symbols are placed &t 50, 100, 150, 200, 300, 400, and 500

in both cases. The initial positions are marked with a cross. For comparison,
the paths of a Bessel monopole starting at the same positions in a domain
with free-slip walls is shown by dash-dotted lines until that monopole has
completed one revolution; cf. Fig. tb) Part of the path of a Bessel mono-
pole, initially at(1,0), fromt= 150 untilt=1000. The symbols are placed at
t=150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1000.
[Note that in(b) the vertical scale is not the same as the horizohtal.

IV. RESULTS FOR A DOMAIN WITH NO-SLIP WALLS

A no-slip condition cannot be applied to the walls in the
point vortex model since that model cannot handle vorticity
generation somewhere in the domain. The effect of no-slip
walls on the motion of a distributed monopolar vortex can be
studied and compared with its motion in the domain with
free-slip walls from the previous section. The computations
have been done with all three types of monopoles. If the
,monoDOI? Starj[S in (1,0) there appears to be little dlﬁerencne—lG. 4. Contours of vorticity of a Bessel monopole initially @0 at
in the trajectories the monopoles follow. For (2,0) as a startselected moments in time until shortly after the large “kink” in the path
ing point the trajectories are clearly different for the first partshown in Fig. 3. Solid lines represent positive vorticity at leve8.001,
of the evolution, but as time goes on and vorticity is spread+0-01' +0.05, +0.1, and+0.25. Dashed lines represent negative vorticity

. levels—0.001, —0.01, —0.05, —0.1, and—0.25; the latter level is onl
more and more the evolution of the three monopoles bedt Vel —0.001,~0.01, ~0.05, 0.1, and~0.25; the latter level is only

. . . ) .~ _present in the first three graphs. The areas with vorticity betwe@i®01
comes similar again. Because of the difference in evolutioning-+0.001 (effectively “zero-vorticity”) and between-0.1 and—0.05 are
the three monopoles are discussed separately, with in athaded dark and light, respectively.

cases the Reynolds number equal tc=R€00.

A. Motion of a Bessel monopole Similar kinks, though less pronounced, appear also later on

Figure 3a) shows a part of the paths of a Bessel mono-along the path. Performing the same computation at higher
pole starting at initial position§l,0) and (2,0) for both the grid density (256 cells in either direction, i.e.,
no-slip and free-slip boundary conditions. Clearly, the no-Ax=Ay~0.023) shows the large kink at the same time at
slip walls affect the motion of the monopole considerably: itthe same location within the domain, indicating that this kink
moves away from the wall and tends to drift to the center ofis physical and not just an artifact due to the finite grid size.
the domain along a path that is not a smooth spiral. ContinSome of the smaller kinks in the trajectory after300 are
ued computation after=500 shows that the monopole in- not: they become less pronounced at higher grid density. At
deed approaches the center of the domain closer and closany time of the motion the difference between the trajecto-
[Fig. 3b)]; the closer it gets to the center, the slower is itsries at 128 and 256 grid cells is of the order of #pi.e.,
drift motion. It is not surprising to find that the nearer the much less then the mesh size of the grid.
monopole initially is to the wall, the larger is the influence of Figure 4 shows contours of vorticity at selected moments
the no-slip walls. In the following, the trajectory of the in time until shortly after the large kink in the monopole’s
monopole initially at(1,0) is studied in more detail; the mo- path. The areas with vorticity between0.001 and+0.001
tion of the monopole initially at2,0) is somewhat more (i.e., with effectively “zero-vorticity”) are shaded to distin-
complicated, but not basically different. guish the monopole’s original positive vorticity from the

Starting at(1,0), the monopole moves along a curved wall-induced negative vorticity. The areas with vorticity be-
path with slowly decreasing velocity. Afté= 200 the veloc- tween—0.1 and—0.05 (some intermediate level of the in-
ity slows down considerably and at abaut 225 one ob- duced negative vorticijyare shaded too, but with a some-
serves a “kink” in the path, as can also be seen in Fi®§).3 what lighter grey.

2396 Phys. Fluids, Vol. 8, No. 9, September 1996 van Geffen, Meleshko, and van Heijst

Downloaded-07-Aug-2011-to-131.155.2.66.-Redistribution-subject-to-AlP-license-or-copyright;-see=http://pof.aip.org/about/rights_and_permissions



t = 1000

FIG. 6. As Fig. 3a), but for (a) a Rankine monopole, an@) a Gaussian

FIG. 5. (a) Contours of vorticity at=1000 of a Bessel monopole initially at monopole.

(1,0. Solid lines represent positive vorticity at levet€).001, +0.01, and
+0.05. Dashed lines represent negative vorticity at leve&001 and
—0.01. The areas with vorticity between0.001 and+0.001 (effectively
“zero-vorticity” ) are shaded darkb) Relationship between vorticiy and

streamfunctiony of the distribution in(a) diffusion, as a study of the evolution of a 2D-flow on a

square domain by van de Konijnenb&tghows.

The straight line w=1.544—0.024 fits through the
straight branch of Fig.®). A Bessel monopole in an infinite
fluid, given by(2b), is a(quasijstationary axisymmetric so-
lution of the inviscid vorticity equation[i.e., (1) with
v=0]. This solution is based on the assumption of a linear
relation between vorticity and streamfunctiomi=k?y,

Initially (not shown in Fig. # the whole domain has
zero-vorticity, except for the circular region of radius
ro=0.5 around1,0) occupied by the monopole. The no-slip

fr?grgjlrt:)cl)lg dafj thaes \tl\rgae”?ngrrwf)atglz ;%%(ﬂlls t:)/(?[;[lec'\'/[\)//éll\ggﬁjh 'Swhereka=2.4048 witha the radius of the monopole. As-
P P suming that this relation is also valid for the monopolar vor-

rotates. At this stage of the evolution the flow field be.arstex of Fig. 5, its radius is a~(2.4048)A/1.54~ 1.9, which
some resemblance to a large asymmetric dipolar vortex: the

ositive monopole is accompanied by an asymmetric nega- In good agreement with Fig.(8. Hence, a well-defined
P [MONopote 15 npa y an asy 9%ranch in thew, -relation such as in Fig.(b) indicates that
tive vorticity distribution which is on one side of the mono-

pole stronger than elsewhere in the domain. Gradually ththe flow of the monopolar vortex at the center of the domain

. . S as become axisymmetric. The scatter aroung O is
negative wall-induced vorticity is spread over a larger an : -
) . caused by the advection of vorticity near the walls, where the
larger area due to viscosity, and the asymmetry becomes legs . . : . . .
; L ow is essentially non-axisymmetric. As time goes on this
and less pronounced. What is lefttat 250 (bottom-right in ;
. . . scatter reduces due to viscous effects.
Fig. 4) is an almost circular monopolar vortex, located al- . -
. The trajectory of a Bessel monopole initially at (2,0)
most at the center of the domain.

T shows also some kinks, as can be seen in F{g@. 3At
The kink in the monopole’s patfat aboutt=225; see : . _
Fig. 3(b)] occurs when the area of vorticity less the.05, t=51 there is a rather sharp kirtitt x=0.780) and between

forming att=200 a large semi-circular area to the left of thet: 100 and 150 there is a less pronounced one. The nature of

) these kinks is the same as of the kink discussed above: the
monopole, breaks up in two separate parts left and above the

monopole(seet= 250 in Fig. 4. At about the same moment |nt(T|rgc(;ion Zetwgen thehpo_s itive monqpolg dandl the negative
the asymmetry in the contour of0.01 (clearly visible at wall-induced vorticity. T !s_|nteract|on IS evidently more im-
_ . g P_ortant for a monopole initially located nearer to the wall
t=200) has almost disappeared. The negative induced VOLind it can cause sharp kinks in the monopole’s trajectory
ticity is then almost symmetrically distributed around the '
positive monopole and the asymmetric-dipolar-like behavior
becomes less pronounced. Note that frioaR200 to 250 the
motion of (the center ofthe vortex is very weaka travelled
distance of about 0.02; Fig.(®] compared with its radius Figure Ga) shows the trajectories of a Rankine mono-
(about 1.5; bottom-right in Fig.)dat that time. pole in a domain with no-slip walls, which can be compared
Continued computation shows that the last asymmetriewith Fig. 3(@. For a monopole starting at (1,0) there is
in the (negative vorticity gradually disappear aftee=250. hardly any difference visible between the trajectories of a
Figure §a) shows vorticity contours at=1000: the whole Bessel and a Rankine monopadiithe difference is of the
structure is nearly symmetrical with respect to the center obrder of the thickness of the lines used in the grapls
the domain. The tracer initially placed at the center of theRankine monopole initially at (2,0) moves along a trajectory
monopole remains at the maximum of vorticity throughoutsimilar to that of a Bessel monopole, but not quite the same:
its evolution; att=1000 this tracer is ax=0.016 and the first sharp kink occurs a little later in the evoluticat
y=—0.003. Figure &) shows that the relationship between t=57.5) and it is located somewhat more towards the
vorticity w and streamfunction) at t=1000 has become y-axis (atx=0.694). It is difficult to see at the scale of Fig.
linear, except for the contribution of the vorticity in the cor- 6(a), but enlarging the graph shows that in fact the center of
ners. This linearization in the center of the domain of anthe monopole performs a small loop thétlee tracer used to
initially non-linear w, ¢-relation is mainly caused by viscous make the graph it has not moved away from the maximum of

B. Motion of a Rankine monopole
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vorticity!). After aboutt=80 the trajectories are almost the aboutt=220), followed by a motion similar to that of the
same again, though the path of the Rankine monopole is lesgher two monopoles. At=500 the centers of the three

smooth than the path of the Bessel monopole. monopoles lie only about 0.02 apart. And due to viscous
decay(cf. Fig. 2 the three monopoles will now have almost

C. Motion of a Gaussian monopole the same vorticity distribution so that they will continue to
move along almost the same trajectory towards the center of

The motion of a Gaussian monopole in a domain with
no-slip boundary conditions also has been computed with
spectral method by Clerékwhich uses 2D Chebyshev poly-
nomials. A spectral method has the advantage that it resolvés CONCLUSIONS

the viscous boundary layer near the walls—where rather A gistributed two-dimensional monopolar vortex in a

large vorticity gradients can occur—better than a finite dif-oynded domain with free-slip walls moves along the walls
ference method does. The reason for this is that a finite difsf the domain in a manner strikingly similar to the motion of
ference method uses an equidistant grid whereas a specti@hyint vortex of(initially) the same intensity and starting at
method uses collocation points which, when Chebysheyhe same position—in spite of a considerable spreading of
polynomials are used, condense near the boundaries. For thgs monopole’s initial vorticity due to viscosity. This is in-
monopole initially at (1,0) and (2,0), respectively,>480  gependent of the precise initial vorticity distribution of the
and 65<65 Chebyshev polynomials are used, meaning thafyonopole. Thus, thérelatively) simple model of point vor-
the distance between the first collocation point and th§ices appears to be rather powerful in describing the main
boundaries is about 0.01 and 0.004; the distance between thgares of the general behavior during one revolution of
first and the second collocation point is about 3 times thajistributed vortex structures in a bounded domain with free-
much. The properties of a spectral method are best used Wig]ip boundaries.

smooth initial vorticity distributions such as the Gaussian  afier the first revolution a point vortex continues along

monopole. _ the same trajectory. The motion of the distributed monopole
A Gaussian monopole initially at (1,0) shows a gepends on viscous effects: viscosity spreads the vorticity
trajectory—see Fig. ()—which is almost identical to that oyer a larger area and thus slows down the monopole, which
of a Bessel monopolgFig. 3(a)]. There is, however, a no- | thys spiral towards the center of the domain. The higher
ticeable difference in the nature of the kink occurring in they,o Reynolds number is, the longer the monopole remains
trajectory att =200~ 250: for a Bessel monopole the kink is ¢jose to the trajectory of the point vortex. For low Reynolds
smooth, whereas for a Gaussian monopole the trajectory,mpers the viscous decay spreads the vorticity throughout

shows a rather sharp kink. This is not visible in Figh)6but e gomain before the monopole has completed one revolu-
the kink is as sharp as that in the trajectory of a monopolgj,,.

starting at (2,0). The location of the kink within the domain In case of a domain with no-slip walls, i.e., zero veloci-

and the moment in time when it occurs are the same for thges at the walls, the distributed positive monopole moves
Gaussian and the Bessel monopole. The computations Withong the wall and immediately away from it along a curved
the spectral method show a trajectory of the Gaussian mongsyt not completely smooth path to the center of the domain
pole almost identical to the one it follows with a finite dif- 55 3 result of the negative vorticity induced by the walls. The
ference method: at any time the difference between the raperaction between the positive and negative vorticity causes
jectories |_s.of the order of I(? and t_he kink occurs at the (sometimes quite sharginks to appear in the trajectory of
same position at the same time and is also sharp. This meafs, monopoles: A large area of positive vorticity—rotating
that even though the finite difference method resolves thg,q moving due to the walls—is surrounded by an asymmet-
viscous effects near the walls not as good as the spectrgl: gistribution of negative vorticity. This combination acts
method does, the overall effects of the no-slip condition argjye 5 kind of asymmetric dipolar vortex and moves along a
incorporated quite well by the finite difference method. Theged path, which bends if the negative vorticity area
correspondence between the results of both methods showseaks up and is spread around the positive vorticity. The
that the_kink in the trajectory is of physical origin, as dis- ¢jgser the monopole initially is to a boundary, the more
cussed in Sec. IV A. _ _ negative vorticity is induced near the walls and pulled into
The reason that the trajectory of the Gaussian monopolge gomain and wrapped around the positive monopole as it
shows a sharp kink has presumably something to do with thg,yes towards the center, and the more important is the
somewnhat larger effect the no-slip condition has: initially thepyecise initial vorticity distribution for the trajectory of the
Gaussian monopole has non-zero vorticity near the wallgygnopole’s center.
[see Eq(20)], whereas the Bessel monopole has zero vortic-  pye to viscous diffusion, the relationship between vor-

ity outside the initial circle of radius,=0.5. _ ticity and streamfunction becomes well-defined when the
Like the other two monopoles, a Gaussian monopole iniyygnopole has reached the center of the domain, which im-

tially at (2,0) moves along a trajectofgee Fig. @)]with @ jies that the resulting vorticity distribution is axisymmetric.
sharp kink, which in fact is a small loop as in the trajectory

of the Rankine monopole. But in this case the kink occurs

later in the evolutior(at aboutt=90) and more towards the ACKNOWLEDGMENTS
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