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In this paper we describe results of a study of the two-dimensional motion of a distributed
monopolar vortex in a viscous incompressible fluid in a bounded rectangular domain with free-slip
and no-slip boundary conditions. In the case of free-slip walls the motion of the vortex center can
be satisfactorily modelled by a single point vortex in an inviscid fluid. Comparison of the results of
both models reveals a good quantitative agreement for the trajectories of the vortex centers and of
the period of one revolution around the center of the domain, for moderate viscous effects
(Re51000 and more!. In a domain with no-slip walls the distributed monopolar vortex moves to the
center of the domain along a curved but not smooth trajectory due to the interaction of the monopole
and the wall-induced vorticity. ©1996 American Institute of Physics.@S1070-6631~96!01009-4#

I. INTRODUCTION

Two-dimensional~2D! vortex motion in bounded do-
mains has been studied for quite a long time~Villat 1;
Müller2; see also Saffman3!. Traditionally, the attention was
concentrated on the motion of point vortices in an inviscid
fluid with so-called ‘‘free-slip’’ walls: the normal component
of the velocity is equal to zero at the wall, with no restriction
on the tangential velocity. An elegant mathematical tech-
nique based on Green’s function~Saffman3! permits us to
write a set of ordinary differential equations for the motion
of point vortices inside any domain. These equations express
in a rather general and concise manner a very extensive class
of phenomena. One important conclusion is that a single
point vortex, although immovable in an unbounded fluid at
rest at infinity, placed in a bounded domain will move due to
the velocity field induced by the system of its image vortices.

On the other hand, comparatively little has been done to
clarify the influence of viscous effects on the motion of ini-
tially compact vorticity distributions in a bounded domain. In
this paper we provide a comparative analysis of the motion
of a point vortex and of a circular vortex with a non-singular
initially axisymmetric vorticity distribution~henceforth re-
ferred to as ‘‘monopole’’! in an inviscid and viscous fluid,
respectively, confined in a rectangular domain with free-slip
walls. Such a rather simple and basic configuration offers a
better understanding of the possibilities of both models.

In physical reality, however, free-slip walls are not
present since there is always friction at the walls. Hence, one
would want to apply a ‘‘no-slip’’ boundary condition: at the
wall the velocity of the fluid equals zero. This condition
implies generation of oppositely-signed vorticity near the
wall, leading to a flow evolution different from the case of
free-slip walls~see, e.g., Orlandi4; Verzicco et al.5!. A no-
slip boundary condition cannot be applied to point vortices,

but it can be applied in the method used for the computations
with the distributed monopole, so that the effect of no-slip
walls can be studied too.

In the next section the vortex models used in the numeri-
cal simulations are discussed. The results of these simula-
tions for free-slip and no-slip domain boundaries are pre-
sented in Secs. III and IV, respectively. The paper ends with
some general conclusions.

II. MODELS FOR THE VORTEX MOTION IN A
RECTANGULAR DOMAIN

The non-stationary 2D flow of an incompressible vis-
cous fluid with distributed vorticityv is governed by the
Navier-Stokes equation, here written in the
(v,c) –formulation:

]v

]t
1J~v,c!5n¹2v, v52¹2c, ~1!

where J and ¹2 are the Jacobian and Laplacian operator,
respectively,c the streamfunction, andn the kinematic vis-
cosity. The numerical scheme used to solve the non-linear
system~1! is a finite difference method similar to the one
used by Orlandi.4 The main difference with Orlandi4 is that
either free-slip or no-slip boundary conditions are imposed at
the walls.

Two initially compact axisymmetric distributions of vor-
ticity in a patch of radius r 0 and centered around
(x1

(0) ,y1
(0)) are used, namely

v~r !5v0 , ~2a!

v~r !5v0J0~kr/r 0!, ~2b!

corresponding to a Rankine vortex and a Bessel-type mono-
pole, respectively, with zero vorticity outside the patch@i.e.,
v(r.r 0)50]. Here r 25(x2x1

(0))21(y2y1
(0))2, and

k52.4048 is the first root of the equationJ0(k)50. The
third vortex model used is

v~r !5v0exp~2r 2/R2!, ~2c!
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usually referred to as a Gaussian monopole~or Lamb vortex;
see Saffman and Baker6!, whereR is the length scale of the
vortex, which is set equal toR5r 0. In all three cases the
value ofv0 is chosen such that the total initial intensity of
the vortex is equal toG1. After making~1! dimensionless in
the usual way, the Reynolds number Re appears, which can
be written as Re5G1 /n.

The motion of a point vortex of constant intensityG1 in
an inviscid fluid in a rectangular domain
2a<x<a,2b<y<b bounded by free-slip walls was stud-
ied early this century~Villat 1; Müller2!; these publications
provide the analytical solution of the closed trajectory of the
vortex and of the period of a full revolution. The equations
of the point vortex motion can, expressed in its coordinates
(x1 ,y1), be written in the form of a Hamiltonian system:

dx1
dt

5
]H1

]y1
,

dy1
dt

52
]H1

]x1
, ~3!

with initial conditionsx15x1
(0) ,y15y1

(0) . Here

H1~x1 ,y1!52
G1

8p
ln@`~2x112a!1`̄~2y112b!#, ~4!

where `(z) and `̄(z) are the Weierstrass rho functions
~Abramowitz and Stegun7! with half-periods 2a, 2ib and
2b, 2ia, respectively.

The trajectory of the vortex in the rectangle is a closed
curve defined by

H1~x1 ,y1!5H1~x1
~0! ,y1

~0!!. ~5!

For the initial position of the vortex not too close to the walls
the trajectory resembles an ellipse drawn around the center
of the rectangle. The period of revolution can be calculated
explicitly in the form of an ultra-elliptic integral~Villat 1!.
The trajectory of the point vortex is independent of the value
of G1, but the period of one full revolution is proportional to
1/G1.

To follow the trajectories of the distributed monopoles a
single passive tracer is placed at the initial center of the
monopole and it is the trajectory of this tracer which is
shown in the figures. A tracer is used because the maximum
of vorticity can only be determined at grid points, so that the
path of the maximum of vorticity is not a smooth line and
can thus not easily be compared with the point vortex’ tra-
jectory. Since the fluid is considered to be incompressible a
radial motion with respect to the monopole’s center is not
expected and thus the tracer is expected to remain on the
maximum of vorticity, at least as long as there is a~clear!
maximum. When the tracer moves away from the maximum
it starts making circular orbits around the maximum as the
monopole moves through the domain. If this happens, it is
mentioned in the text.

The numerical simulations reported in the paper are per-
formed in a square domain witha5b53, and the intensity
of the vortices att50 is G151. In the finite difference
method the grid used has 128 cells in either direction~i.e.,
Dx5Dy'0.047) and the initial radius of the distributed
monopoles isr 050.5.

III. RESULTS FOR A DOMAIN WITH FREE-SLIP WALLS

If a free-slip condition is applied to the walls of the
domain, a comparison between the motion of a point vortex
and a distributed monopole is possible. Consider first the
case of a point vortex and a monopole located initially at
~1,0! and with Reynolds number Re5G1 /n51000.

The results of the simulations, presented in Fig. 1 and
Table I, show that the trajectory and the period of one full
revolution of both the point vortex and the center of the
monopole as well as the moments of crossing the corre-
spondingx andy-axes agree very well for all three types of
distributed monopoles. This is especially surprising since in
the viscous cases the initially compact vorticity is gradually
spread over a larger area and hence the vorticity maximum
decreases in time, as shown in Fig. 2. Initially the diameter
of the monopoles is 1/6-th of the domain size, but after half
a revolution (t5t2; see Fig. 2! the diameter of the mono-
poles is already larger than 1/3-rd of the domain size and the
maximum of vorticity has decreased so much that one can no
longer speak of vorticity being concentrated in a small patch.
A point vortex would thus seem to be a bad model for the
evolved monopoles, yet the motion of the point vortex and
the center of the monopoles are in good agreement for one
revolution.

The results in Table I show that the orbital period of the
initially compact monopolar vortex is only weakly dependent
on the initial vorticity distribution. Figure 2 shows that the
decay of the three monopoles is quite similar once the first
quadrant has been crossed: the vorticity profiles look almost

FIG. 1. Trajectories for one full revolution of a Bessel monopole~solid
lines! and a point vortex~dashed lines! in a square domain starting either at
(1,0) or at (2,0); the initial positions are marked with a cross. For the Bessel
monopole the Reynolds number is Re51000. A Rankine or Gaussian mono-
pole follows the same trajectory as the Bessel monopole. See also Table I.

TABLE I. Times t1 ,t2 ,t3, andt4 at which the center of the vortex initially
located at (1,0) successively crosses the coordinate axes for the point vortex
and the three distributed monopoles. The Reynolds number is Re51000.
The trajectories of the point vortex and the Bessel monopole are shown in
Fig. 1.

Vortex t1 t2 t3 t4

Point 95.4 190.7 286.1 381.5
Bessel 93.8 188.4 284.6 383.3
Rankine 93.9 188.9 285.2 384.1
Gaussian 94.0 189.3 286.6 386.8
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the same att5t1 and later on. For the case of the Rankine
monopole the decrease of the maximum of vorticity is pre-
dicted very well~with a difference of about 0.5%! by the
solution of Terazawa8 and Nekrassow9 for an infinite do-
main, which isvmax/v0512exp(2r0

2/4nt).
As time goes on after one revolution, the vorticity is

spread more and more and the maximum of vorticity spirals
to the center of the domain. The Bessel monopole, for in-
stance, has completed one revolution att5383.3 when it
crosses thex-axis inx50.967, and it has completed a second
revolution at t5826.8 when it crosses thex-axis in
x50.761.

Table II shows the results for a Bessel monopole in the
range of Reynolds numbers from 200 to 20,000, and a com-
putation without viscous effects@i.e., ~1! with n50#. For
Reynolds numbers larger than 1000 the period of one revo-
lution decreases somewhat: for large Re the Bessel mono-
pole is about 2% faster than the point vortex. The trajectory
of the monopole lies closer to that of the point vortex for
higher Reynolds numbers, as expected~not shown!: for
Re51000 the center crosses thex-axis after one revolution
at x50.967 and for Re52000 atx50.997. Especially during
the first half of a revolution the viscous decay does not affect
the motion very much and a point vortex is a good model for
the distributed vorticity. For Re5500 the Bessel monopole is
only about 1% slower than for Re51000 att2, but after that
the vortex decays more and more and att4 the difference is
about 6%.

For Re5200 the difference with respect to Re51000 is
at t2 about 7%. About at that time the tracer initially placed
at the maximum of vorticity gradually moves away from the
maximum and starts rotating around that maximum as the
maximum goes to the center of the domain. Since the maxi-
mum of vorticity can only be determined at grid points the
moment of time it crosses an axis cannot be found exactly,
but only as a range of times when the grid-coordinate of the
maximum equals the coordinate of the axis. Att3535764
the maximum of vorticity crosses the negativey-axis and the
positive x-axis is crossed att45654630. At t51000 the
maximum of vorticity is one grid point away from the center
~i.e., about 0.047! and the vorticity is spread over the entire
domain almost evenly: the maximum of vorticity is 0.0061
~at t50 it is 2.9448; see Fig. 2!.

All in all one can state that for Reynolds numbers larger
than 500 the motion of the point vortex is in good agreement
with that of the center of the distributed monopole. For lower
Reynolds numbers the viscous decay of the vortex is too fast
for the vortex to complete one revolution with a clear maxi-
mum of vorticity and the point vortex is not an adequate
model.

If the initial position of the monopole and the point vor-
tex is shifted nearer to the wall, the quantitative difference in
periods becomes more significant, even for Re51000: for
the Bessel monopole and the point vortex, respectively, both
initially centered at (2,0) the time for half a revolution is
Thal f(Bessel)5133.3 andThal f(PV)5127.8~a difference of
about 4%! and for a full revolutionTfull(Bessel)5305.1 and
Tfull(PV)5255.6 ~about 19% difference!. Figure 1 shows
the respective trajectories. A Rankine monopole moves
along a trajectory quite similar to that of the Bessel mono-
pole, but somewhat slower:Thal f(Rankine)5135.3 and
Tfull(Rankine)5312.8. The trajectory of a Gaussian mono-
pole lies somewhat inside that of the other two monopoles
and it is some 10% slower:Thal f(Gaussian)5143.2 and
Tfull(Gaussian)5335.7. Clearly the effect of the nearby wall
on the distributed vorticity is quite large and depends on the
exact initial vorticity distribution.

FIG. 2. Profiles of the vorticity distribution along the line through the center
of the vortex parallel to the nearest wall at initial timet5t050 and at times
t5t1 ,t2 ,t3 ,t4 given in Table I. ~a! The Bessel-type monopole.~b! The
Rankine vortex.~c! The Gaussian monopole. For all three monopoles the
Reynolds number is Re51000.

TABLE II. Times t1 ,t2 ,t3, andt4 at which the center of the Bessel mono-
pole initially located at (1,0) successively crosses the coordinate axes for
different Reynolds numbers Re. The timest3 and t4 for Re5200 are not
given since then the tracer initially at the center of the monopole is no
longer located at the maximum of vorticity; see the text on this. The values
for Re51000 are also given in Table I.

Re t1 t2 t3 t4

200 95.3 202.3 — —
500 94.1 190.7 293.0 404.8
1000 93.8 188.4 284.6 383.3
2000 93.6 187.6 282.0 377.0
5000 93.6 187.3 281.1 375.0
10000 93.6 187.3 281.0 374.6
20000 93.5 187.3 280.9 374.6
` 93.6 187.0 280.7 374.3
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IV. RESULTS FOR A DOMAIN WITH NO-SLIP WALLS

A no-slip condition cannot be applied to the walls in the
point vortex model since that model cannot handle vorticity
generation somewhere in the domain. The effect of no-slip
walls on the motion of a distributed monopolar vortex can be
studied and compared with its motion in the domain with
free-slip walls from the previous section. The computations
have been done with all three types of monopoles. If the
monopole starts in (1,0) there appears to be little difference
in the trajectories the monopoles follow. For (2,0) as a start-
ing point the trajectories are clearly different for the first part
of the evolution, but as time goes on and vorticity is spread
more and more the evolution of the three monopoles be-
comes similar again. Because of the difference in evolution
the three monopoles are discussed separately, with in all
cases the Reynolds number equal to Re51000.

A. Motion of a Bessel monopole

Figure 3~a! shows a part of the paths of a Bessel mono-
pole starting at initial positions~1,0! and ~2,0! for both the
no-slip and free-slip boundary conditions. Clearly, the no-
slip walls affect the motion of the monopole considerably: it
moves away from the wall and tends to drift to the center of
the domain along a path that is not a smooth spiral. Contin-
ued computation aftert5500 shows that the monopole in-
deed approaches the center of the domain closer and closer
@Fig. 3~b!#; the closer it gets to the center, the slower is its
drift motion. It is not surprising to find that the nearer the
monopole initially is to the wall, the larger is the influence of
the no-slip walls. In the following, the trajectory of the
monopole initially at~1,0! is studied in more detail; the mo-
tion of the monopole initially at~2,0! is somewhat more
complicated, but not basically different.

Starting at~1,0!, the monopole moves along a curved
path with slowly decreasing velocity. Aftert5200 the veloc-
ity slows down considerably and at aboutt5225 one ob-
serves a ‘‘kink’’ in the path, as can also be seen in Fig. 3~b!.

Similar kinks, though less pronounced, appear also later on
along the path. Performing the same computation at higher
grid density ~256 cells in either direction, i.e.,
Dx5Dy'0.023) shows the large kink at the same time at
the same location within the domain, indicating that this kink
is physical and not just an artifact due to the finite grid size.
Some of the smaller kinks in the trajectory aftert5300 are
not: they become less pronounced at higher grid density. At
any time of the motion the difference between the trajecto-
ries at 128 and 256 grid cells is of the order of 1023, i.e.,
much less then the mesh size of the grid.

Figure 4 shows contours of vorticity at selected moments
in time until shortly after the large kink in the monopole’s
path. The areas with vorticity between20.001 and10.001
~i.e., with effectively ‘‘zero-vorticity’’! are shaded to distin-
guish the monopole’s original positive vorticity from the
wall-induced negative vorticity. The areas with vorticity be-
tween20.1 and20.05 ~some intermediate level of the in-
duced negative vorticity! are shaded too, but with a some-
what lighter grey.

FIG. 3. ~a! The path of a Bessel monopole, initially either at~1,0! or at~2,0!,
in a domain with no-slip walls is shown by a solid and dashed line, respec-
tively, for t50 until t5500. Only a part of the full domain is shown for
clarity. The symbols are placed att550, 100, 150, 200, 300, 400, and 500
in both cases. The initial positions are marked with a cross. For comparison,
the paths of a Bessel monopole starting at the same positions in a domain
with free-slip walls is shown by dash-dotted lines until that monopole has
completed one revolution; cf. Fig. 1.~b! Part of the path of a Bessel mono-
pole, initially at~1,0!, from t5150 until t51000. The symbols are placed at
t5150, 200, 250, 300, 350, 400, 450, 500, 600, 700, 800, 900, and 1000.
@Note that in~b! the vertical scale is not the same as the horizontal.#

FIG. 4. Contours of vorticity of a Bessel monopole initially at~1,0! at
selected moments in time until shortly after the large ‘‘kink’’ in the path
shown in Fig. 3. Solid lines represent positive vorticity at levels10.001,
10.01,10.05,10.1, and10.25. Dashed lines represent negative vorticity
at levels20.001,20.01,20.05,20.1, and20.25; the latter level is only
present in the first three graphs. The areas with vorticity between20.001
and10.001~effectively ‘‘zero-vorticity’’! and between20.1 and20.05 are
shaded dark and light, respectively.
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Initially ~not shown in Fig. 4! the whole domain has
zero-vorticity, except for the circular region of radius
r 050.5 around~1,0! occupied by the monopole. The no-slip
condition at the walls creates negative vorticity, which is
then rolled up as the monopole moves~due to the walls! and
rotates. At this stage of the evolution the flow field bears
some resemblance to a large asymmetric dipolar vortex: the
positive monopole is accompanied by an asymmetric nega-
tive vorticity distribution which is on one side of the mono-
pole stronger than elsewhere in the domain. Gradually the
negative wall-induced vorticity is spread over a larger and
larger area due to viscosity, and the asymmetry becomes less
and less pronounced. What is left att5250 ~bottom-right in
Fig. 4! is an almost circular monopolar vortex, located al-
most at the center of the domain.

The kink in the monopole’s path@at aboutt5225; see
Fig. 3~b!# occurs when the area of vorticity less then20.05,
forming att5200 a large semi-circular area to the left of the
monopole, breaks up in two separate parts left and above the
monopole~seet5250 in Fig. 4!. At about the same moment
the asymmetry in the contour of20.01 ~clearly visible at
t5200) has almost disappeared. The negative induced vor-
ticity is then almost symmetrically distributed around the
positive monopole and the asymmetric-dipolar-like behavior
becomes less pronounced. Note that fromt5200 to 250 the
motion of ~the center of! the vortex is very weak@a travelled
distance of about 0.02; Fig. 3~b!# compared with its radius
~about 1.5; bottom-right in Fig. 4! at that time.

Continued computation shows that the last asymmetries
in the ~negative! vorticity gradually disappear aftert5250.
Figure 5~a! shows vorticity contours att51000: the whole
structure is nearly symmetrical with respect to the center of
the domain. The tracer initially placed at the center of the
monopole remains at the maximum of vorticity throughout
its evolution; at t51000 this tracer is atx50.016 and
y520.003. Figure 5~b! shows that the relationship between
vorticity v and streamfunctionc at t51000 has become
linear, except for the contribution of the vorticity in the cor-
ners. This linearization in the center of the domain of an
initially non-linearv,c-relation is mainly caused by viscous

diffusion, as a study of the evolution of a 2D-flow on a
square domain by van de Konijnenberg10 shows.

The straight linev51.54c20.024 fits through the
straight branch of Fig. 5~b!. A Bessel monopole in an infinite
fluid, given by~2b!, is a ~quasi-!stationary axisymmetric so-
lution of the inviscid vorticity equation@i.e., ~1! with
n50]. This solution is based on the assumption of a linear
relation between vorticity and streamfunction:v5k2c,
whereka52.4048 witha the radius of the monopole. As-
suming that this relation is also valid for the monopolar vor-
tex of Fig. 5, its radiusa is a'(2.4048)/A1.54'1.9, which
is in good agreement with Fig. 5~a!. Hence, a well-defined
branch in thev,c-relation such as in Fig. 5~b! indicates that
the flow of the monopolar vortex at the center of the domain
has become axisymmetric. The scatter aroundc50 is
caused by the advection of vorticity near the walls, where the
flow is essentially non-axisymmetric. As time goes on this
scatter reduces due to viscous effects.

The trajectory of a Bessel monopole initially at (2,0)
shows also some kinks, as can be seen in Fig. 3~a!. At
t551 there is a rather sharp kink~at x50.780) and between
t5100 and 150 there is a less pronounced one. The nature of
these kinks is the same as of the kink discussed above: the
interaction between the positive monopole and the negative
wall-induced vorticity. This interaction is evidently more im-
portant for a monopole initially located nearer to the wall
and it can cause sharp kinks in the monopole’s trajectory.

B. Motion of a Rankine monopole

Figure 6~a! shows the trajectories of a Rankine mono-
pole in a domain with no-slip walls, which can be compared
with Fig. 3~a!. For a monopole starting at (1,0) there is
hardly any difference visible between the trajectories of a
Bessel and a Rankine monopole~the difference is of the
order of the thickness of the lines used in the graphs!. A
Rankine monopole initially at (2,0) moves along a trajectory
similar to that of a Bessel monopole, but not quite the same:
the first sharp kink occurs a little later in the evolution~at
t557.5) and it is located somewhat more towards the
y-axis ~at x50.694). It is difficult to see at the scale of Fig.
6~a!, but enlarging the graph shows that in fact the center of
the monopole performs a small loop there~the tracer used to
make the graph it has not moved away from the maximum of

FIG. 5. ~a! Contours of vorticity att51000 of a Bessel monopole initially at
~1,0!. Solid lines represent positive vorticity at levels10.001,10.01, and
10.05. Dashed lines represent negative vorticity at levels20.001 and
20.01. The areas with vorticity between20.001 and10.001 ~effectively
‘‘zero-vorticity’’ ! are shaded dark.~b! Relationship between vorticityv and
streamfunctionc of the distribution in~a!.

FIG. 6. As Fig. 3~a!, but for ~a! a Rankine monopole, and~b! a Gaussian
monopole.
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vorticity!!. After aboutt580 the trajectories are almost the
same again, though the path of the Rankine monopole is less
smooth than the path of the Bessel monopole.

C. Motion of a Gaussian monopole

The motion of a Gaussian monopole in a domain with
no-slip boundary conditions also has been computed with a
spectral method by Clercx11 which uses 2D Chebyshev poly-
nomials. A spectral method has the advantage that it resolves
the viscous boundary layer near the walls—where rather
large vorticity gradients can occur—better than a finite dif-
ference method does. The reason for this is that a finite dif-
ference method uses an equidistant grid whereas a spectral
method uses collocation points which, when Chebyshev
polynomials are used, condense near the boundaries. For the
monopole initially at (1,0) and (2,0), respectively, 40340
and 65365 Chebyshev polynomials are used, meaning that
the distance between the first collocation point and the
boundaries is about 0.01 and 0.004; the distance between the
first and the second collocation point is about 3 times that
much. The properties of a spectral method are best used with
smooth initial vorticity distributions such as the Gaussian
monopole.

A Gaussian monopole initially at (1,0) shows a
trajectory—see Fig. 6~b!—which is almost identical to that
of a Bessel monopole@Fig. 3~a!#. There is, however, a no-
ticeable difference in the nature of the kink occurring in the
trajectory att52002250: for a Bessel monopole the kink is
smooth, whereas for a Gaussian monopole the trajectory
shows a rather sharp kink. This is not visible in Fig. 6~b!, but
the kink is as sharp as that in the trajectory of a monopole
starting at (2,0). The location of the kink within the domain
and the moment in time when it occurs are the same for the
Gaussian and the Bessel monopole. The computations with
the spectral method show a trajectory of the Gaussian mono-
pole almost identical to the one it follows with a finite dif-
ference method: at any time the difference between the tra-
jectories is of the order of 1023, and the kink occurs at the
same position at the same time and is also sharp. This means
that even though the finite difference method resolves the
viscous effects near the walls not as good as the spectral
method does, the overall effects of the no-slip condition are
incorporated quite well by the finite difference method. The
correspondence between the results of both methods shows
that the kink in the trajectory is of physical origin, as dis-
cussed in Sec. IV A.

The reason that the trajectory of the Gaussian monopole
shows a sharp kink has presumably something to do with the
somewhat larger effect the no-slip condition has: initially the
Gaussian monopole has non-zero vorticity near the walls
@see Eq.~2c!#, whereas the Bessel monopole has zero vortic-
ity outside the initial circle of radiusr 050.5.

Like the other two monopoles, a Gaussian monopole ini-
tially at (2,0) moves along a trajectory@see Fig. 6~b!# with a
sharp kink, which in fact is a small loop as in the trajectory
of the Rankine monopole. But in this case the kink occurs
later in the evolution~at aboutt590) and more towards the
y-axis ~at x50.338) than the kink of the Bessel and Rankine
monopole. A second sharp kink occurs a little later on~at

about t5220), followed by a motion similar to that of the
other two monopoles. Att5500 the centers of the three
monopoles lie only about 0.02 apart. And due to viscous
decay~cf. Fig. 2! the three monopoles will now have almost
the same vorticity distribution so that they will continue to
move along almost the same trajectory towards the center of
the domain.

V. CONCLUSIONS

A distributed two-dimensional monopolar vortex in a
bounded domain with free-slip walls moves along the walls
of the domain in a manner strikingly similar to the motion of
a point vortex of~initially ! the same intensity and starting at
the same position—in spite of a considerable spreading of
the monopole’s initial vorticity due to viscosity. This is in-
dependent of the precise initial vorticity distribution of the
monopole. Thus, the~relatively! simple model of point vor-
tices appears to be rather powerful in describing the main
features of the general behavior during one revolution of
distributed vortex structures in a bounded domain with free-
slip boundaries.

After the first revolution a point vortex continues along
the same trajectory. The motion of the distributed monopole
depends on viscous effects: viscosity spreads the vorticity
over a larger area and thus slows down the monopole, which
will thus spiral towards the center of the domain. The higher
the Reynolds number is, the longer the monopole remains
close to the trajectory of the point vortex. For low Reynolds
numbers the viscous decay spreads the vorticity throughout
the domain before the monopole has completed one revolu-
tion.

In case of a domain with no-slip walls, i.e., zero veloci-
ties at the walls, the distributed positive monopole moves
along the wall and immediately away from it along a curved
but not completely smooth path to the center of the domain
as a result of the negative vorticity induced by the walls. The
interaction between the positive and negative vorticity causes
~sometimes quite sharp! kinks to appear in the trajectory of
the monopoles: A large area of positive vorticity—rotating
and moving due to the walls—is surrounded by an asymmet-
ric distribution of negative vorticity. This combination acts
like a kind of asymmetric dipolar vortex and moves along a
curved path, which bends if the negative vorticity area
breaks up and is spread around the positive vorticity. The
closer the monopole initially is to a boundary, the more
negative vorticity is induced near the walls and pulled into
the domain and wrapped around the positive monopole as it
moves towards the center, and the more important is the
precise initial vorticity distribution for the trajectory of the
monopole’s center.

Due to viscous diffusion, the relationship between vor-
ticity and streamfunction becomes well-defined when the
monopole has reached the center of the domain, which im-
plies that the resulting vorticity distribution is axisymmetric.
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