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Abstract 

Numerical simulations with a finite-difference method have revealed that a Lamb dipole when placed in a viscous 
fluid moves along a straight line with decreasing velocity and increasing radius. The relationship between vorticity and 
streamfunction, which initially is linear, becomes more and more sinh-like as the dipole decays. Some other initial dipolar 
vorticity distributions (like two oppositely signed monopolar vortices) were found to evolve to a dipolar structure with 
Lamb-like characteristics. @ 1998 The Japan Society of Fluid Mechanics Incorporated and Elsevier Science B.V. All 
rights reserved. 

PACS: 47.32.Cc; 47.11.+j 
Keywords: Vortex dynamics; Computational methods in fluid dynamics 

1. Introduction 

Two-dimensional (2D) turbulence shows, unlike three-dimensional turbulence, the emergence of  
large-scale structures from small(er)-scale structures; see e.g. McWilliams (1984). This process of  
self-organisation in 2D turbulence finds its origin in the inverse energy cascade: energy initially 
distributed over all scales eventually ends up in the large scales and thus coherent vortex structures 
are formed. The most common type of  such structures that have been found to form is the monopolar 
vortex. Dipolar vortices are common too, though they are less frequently observed than monopoles. 
A tripolar vortex structure has also been seen to form (see e.g. Legras et al., 1988). In the present 
study the attention is restricted to dipolar vortices. 

If, for instance, a turbulent blob of  dye is injected horizontally at the appropriate density level 
in a stratified fluid (the stratification suppresses vertical motions and thus tends to make the flow 
quasi-2D), this blob collapses to a flat pancake-like structure which consists of  two closely packed 
patches of  oppositely signed vorticity (Van Heijst and Fl6r, 1989; F16r and Van Heijst, 1994). The 
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vertical dimension of  such a dipole is much smaller than its horizontal size, hence it can be treated 
as a planar, quasi-2D structure. Similar dipolar vortices can be created by towing a cylinder through 
a rotating fluid (in which the rotation of  the fluid provides the two-dimensionalizing mechanism 
of the motions; Velasco Fuentes and Van Heijst, 1994) or through a thin soap film (Couder and 
Basdevant, 1986): the flow in the wake of  the cylinder consists of  one or more dipolar vortices. 
Electric pulses in a layer of  mercury, which is subjected to a magnetic field to make the motions 
2D, can also lead to the formation of  dipolar vortices (Nguyen Duc and Sommeria, 1988). 

The dipole formed in these 2D flows is fairly stable: the vortex retains its dipolar structure during 
its motion (caused by the dipole's net linear momentum), even though the dipole gradually decays 
due to viscous effects, as discussed e.g. by Fldr and Van Heijst (1994) and F16r et al. (1995). 
Under geophysical circumstances dipolar vortices are often disturbed or even torn apart by external 
forces, such as strain and shear. These effects are not discussed here: the present study focusses on 
the evolution of  dipolar vortices themselves. A numerical and experimental study of  the effects of  a 
strain on dipoles has been done by Trieling et al. (1997), and the effects of  a shear are the subject 
of  future work. 

From the analysis of  the dipoles formed in laboratory experiments it appears that its characteristics 
are well described by the so-called Lamb dipole, a dipolar vortex with a circular form, which is a 
solution of  the inviscid vorticity equation in an infinite domain constructed by Lamb (1932). (In 
fact, this solution was already formulated in a more general form by Chaplygin (1903); see also 
Meleshko and Van Heijst (1994).) In an inviscid fluid the Lamb dipole moves along a straight line 
with constant velocity and without change of  form. This paper presents the results of  a numerical 
study of  the effects of  viscosity and the finiteness of  the domain on the evolution of  a Lamb dipole. 
The numerical method used, a finite-difference method, is outlined in the next section. Section 3 
presents the Lamb dipole and the results of  the numerical simulations of  the evolution are discussed 
in Section 4. Since a dipolar structure with Lamb-like characteristics appears to be a stable structure 
in 2D turbulence, Section 5 focusses on the (numerical) evolution of  some other initial dipolar 
structures (such as two monopolar vortices of  opposite sign next to each other) to study whether a 
Lamb-like dipolar structure emerges. Some conclusions are formulated in Section 6. 

2. The numerical model 

This section presents in brief the basic equations that describe the evolution of  a two-dimensional 
vorticity distribution and the numerical method used for the flow simulations. 

2.1. Governin9 equations 

The flow field v of  an incompressible fluid ( i . e .V .  v = 0) is governed by conservation of  momen- 
tum, which is described by the Navier-Stokes equation. For two-dimensional (2D) flows v = (u, v, 0) 
without background rotation or topography, the Navier-Stokes equation may be written in the 
vorticity-streamfunction formulation: 

- -  + j ( c o ,  4,)  = v v 2 e ) ,  ( 1 ) 
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with the vorticity ~o defined as usual by a) = ~7 × v = (0, 0, co), and the streamfunction ~9 by u = 8~/8y 
and v = - & p / 8 x .  In Eq. ( l )  the Jacobian operator J(co, if) represents the nonlinear advection terms 
and v the kinematic viscosity. From their respective definitions it follows that the vorticity is related 
to the streamfunction by a Poisson-type equation: 

(2) = - -  V 2 ~ / / .  (2) 

Eqs. (1) and (2) describe the evolution of  a certain vorticity distribution under the influence of non- 
linear and viscous effects. 

The following quantities are also used in this paper: 

circulation: F = . f f ( o  dA, 

kinetic energy: E = ~  (V0)  2 dA, (3) 

enstrophy: H = 1 [[o~ 2 dA, 
2 JJA 

where dA is a surface element of  the full computational domain A. Often the circulation F is split 
into two parts: F+ for all areas of positive vorticity and F_ for all areas of negative vorticity; then 
F = F+ + F_. For inviscid flows it can be proven that the three quantities in Eq. (3) are conserved. 
If the viscosity is nonzero these quantities decay in time, although at different rates. 

By making Eq. (1) dimensionless in the usual way, the Reynolds number is introduced: 

R e  - LoVo__ _ L /ro to, ( 4 )  

V Y 

where L0, V0, To and F0 are characteristic scales for length, velocity, time and circulation, respec- 
tively. In this paper these scales are set equal to 1, so that Re = l/v, and in what follows all quantities 
are given in these dimensionless units. This implies that a vortex with a translation velocity of  2, 
say, travels 2 length units in 1 time unit. 

2.2. A finite-difference method 

The simulations described in this paper are performed with a finite-difference method. The method 
is based on a code developed by Orlandi and Verzicco (Orlandi, 1990; Verzicco et al., 1995), which 
is adapted to allow for a great variety of  initial vorticity distributions, to allow for different boundary 
conditions, to include background vorticity and/or topography if needed, and to have the possibility 
to follow the motion of  passive tracers; not all of  these features are used in this paper. 

The finite-difference method used here applies a discretization of the equations on a rectangular 
grid in a rectangular domain in the x, y-plane. The time evolution in Eq. (1) is computed with 
an explicit third-order Runge-Kutta scheme, the viscous term with a Crank-Nicolson scheme, and 
the nonlinear term with the Arakawa scheme. The use of  the Arakawa scheme (Arakawa, 1966) 
guarantees, on the one hand, that in the inviscid case energy, enstrophy and skew symmetry are 
conserved, and on the other hand, that the computation has a high degree of  stability. The stability 
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is linked to the so-called Courant number CFL, which is a measure of  the maximum velocity on 
the grid: 

lul Ivl'~ At, (5) 
CFL : max LAx + Ay J 

with Ax and Ay the mesh size in the x- and y-direction, respectively, and At the time step. When 
only nonlinear terms are used, the numerical method is stable as long as CFL ~< v~.  If viscosity 
plays a role too, the stability becomes even better and CFL could be taken somewhat larger than 
v/3. For the simulations presented in this paper CFL is kept below its limit (CFL is typically about 
1.4 at t - -0 ;  it decreases in time as viscous effects reduce the velocities). The Poisson equation 
(2) is solved with a Fourier analysis and cyclic reduction (FACR) routine. This routine limits the 
choice in number of grid cells to 2 n (n : 1,2, 3, . . . )  in either direction, but the advantage is that it 
is a rather fast routine. 

At the boundaries of  the domain boundary conditions have to be applied. For the simulations 
of  the dipolar vortices presented in this paper, periodic boundaries are used on all sides. In the 
x-direction, which is the direction of  motion of  the dipoles, this means that when the dipole leaves 
the domain on one side, it re-enters on the opposite side. Using periodic boundaries in the y-direction 
is equivalent to using free-slip walls as long as the dipole moves along the symmetry axis of  the 
domain, which is the case throughout this paper. 

2.3. Viscous decay o f  a Rankine vortex 

To determine whether the numerical method handles viscous decay in a correct way, the simple 
case of  a decaying Rankine vortex is used as a test case. 

A Rankine vortex is a single-signed monopolar vortex with a rigid-body rotation in a circular 
region r < a, and outside this region the flow is irrotational: 

(DO, F ~ a ,  
c o :  0 r>a ,  (6) 

where r is the radius with respect to the centre of  the monopole. This vortex is a stable solution 
of  the inviscid vorticity equation (Eq. (1) with v = 0 ) ;  see e.g. Dritschel (1988). The viscous decay 
of  a Rankine vortex in an infinite domain has been studied analytically by Terazawa (1922), who 
found that the decay of  the maximum of vorticity - once the decay has started this is located at 
the vortex centre - is described by 

comax/O90 = 1 - exp(-aZ/4vt) ,  (7) 

and the profile of  vorticity at time t along an arbitrary radial line is described by a summation of  
an infinite series of  first-order Bessel functions. 

The numerical method requires a finite domain, yet a good comparison is possible if the boundaries 
are far enough away from the vortex. For the comparison, a Rankine vortex with radius a = 1 and 
vorticity level coo = 1 is placed at the centre of  a 10x l0  domain. The number of  grid cells is 
128 in either direction, so that the grid spacing is A x = A y ~ 0 . 0 7 8 .  Fig. 1 shows radial vorticity 
profiles at the moments in time for which Terazawa (1922) gives analytical values: the difference 
between analytical and numerical values is less than 0.5%. The computed maximum of  vorticity 
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Fig. 1. Radial profiles of  vorticity of a Rankine vortex which decays due to viscous effects. The solid line shows the 
initial vorticity distribution and the subsequent lines show the vorticity profiles at the moments in time for which Terazawa 
(1922) gives analytical values; these values are shown by symbols. 

appears to given by Eq. (7), with differences also less than 0.5%. (The computation of  Fig. 1 is 
done with Re = 1/v = 1000, but the precise value is not important, since the decay time scales with 
1/v; differences between results obtained at different v-values are less than 0.1%.) 

The finite-difference method clearly handles viscous decay very well, even at a rather coarse grid, 
as long as v is large enough (i.e. if (£xx) 2 <vAt). From this example it is also clear that even 
though the initial Rankine vortex with its steep gradient in the vorticity is not well described by a 
grid method, possible imperfections in the initial vorticity distribution have no significant effect on 
the evolution of  the vortex. Any gradient in the vorticity arising from such an imperfection would 
no doubt accelerate the decay of  the vortex, especially if  the resolution would be insufficient. 

3. Theory of the Lamb dipole 

Motions in a 2D inviscid infinite fluid are described by the vorticity equation (1) with v = 0, 
together with the Poisson equation (2). A steady inviscid flow solution must therefore satisfy: 

J ( ( o ,  I/t) = O, ( o =  - -  V 2  ~//. ( 8 )  

That J ( ~ o , ~ t ) =  0 implies that the vorticity of  such a steady solution can be described by any 
function of  the streamfunction: ~o=F(~9), where F must be an integrable function. One of  the 
possible solutions is Eq. (6): the Rankine vortex. 

Lamb (1932) constructed a dipolar solution with a continuous vorticity distribution inside a circu- 
lar region by assuming a linear relationship between vorticity and streamfunction within this circle 
r = a, and outside the circle an irrotational motion: 

f k 2 ~ ,  r ~ a ,  co = ~ (9) 
O, r > a, k 
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with k some constant. The (potential) flow outside the circle is that of  a cylinder placed in a uniform 
flow with a velocity v=(U0 ,0 )  at infinity, which is given by 

where r is the radial distance to the centre of  the circle and 0 the angle with respect to the flow 
direction. After matching the streamfunction and the velocities of  the interior and exterior solutions 
at the edge of the circle r = a, the interior solution takes the following form: 

~9(r, 0 ) =  ~ , J ~ ( k r ) s i n O ,  r<.a, (10b) 
kJo~aK) 

where J, is the nth order Bessel function of the first kind, and ak the first zero of Jl: 

Jl(ak)=O ~ Ko=_ak..~3.8317, (11) 

with the constant K0 introduced for clarity in the remainder of the paper. This stable solution is 
generally referred to as the Lamb dipole. 

Seen in a fixed frame, the Lamb dipole moves along a straight line (0 - -0 )  with a constant 
velocity (U0) and without change of form. The dipole consists of  two oppositely signed vorticity 
halves which lie symmetrically about its line of  motion. Inserting Eqs. (9), (10a) and (10b) in the 
definitions of circulation, energy and enstrophy given by Eq. (3) shows that these quantities can be 
expressed in terms of  U0 and a (F16r and Van Heijst, 1994; Nielsen and Juul Rasmussen, 1997): 

F+ ~6.83Uoa, E=2rcU~a 2, H 2 2 =rtU~K~, (12) 

which are conserved in an inviscid infinite fluid. The intention of this paper is to investigate the 
effect of  a finite domain and viscosity on the motion and shape of the Lamb dipole and on the 
value of the quantities in Eq. (12). 

Recently, the work of  Chaplygin on dipolar vortices has been rediscovered (see Meleshko and 
Van Heijst, 1994) and it appears that Chaplygin (1903) found a steady inviscid flow solution using 
a more general linear relation than Eq. (9) between vorticity and streamfunction inside a circle of 
radius a: 

° ~ = {  k2(~9 - 2 ) ' 0 ,  rr<a'> a, (13) 

where 2 is some constant. The potential flow outside the circle is again given by Eq. (10a), while 
the vorticity in the interior is described by 

- 2Uok Jo( kr ) 
co-  ~ J l ( k r ) s i n O  + )~k2jo(ak), r<~a (14) 

where ak is given by Eq. (11). This solution is called the Chaplygin dipole. The Lamb dipole is 
clearly only a special case of the Chaplygin dipole, viz. with 2 = 0. 

The Chaplygin dipole - which has zero total circulation for all 2 - moves along a straight line 
(0 = 0) with a constant velocity (U0) and without change of  form. Both the Lamb dipole and the 
Chaplygin dipole have a vorticity distribution which is symmetric about a line through the extrema 
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of vorticity, and this symmetry line is perpendicular to the line of  motion. Unlike for the Lamb 
dipole, however, the vorticity distribution of  the Chaplygin dipole is not symmetric about the line of  
motion, the asymmetry being determined by the value of  2. The latter characteristic of  the Chaplygin 
dipole makes a study of  the effect of  a finite domain and viscosity on the dipole's motion far more 
complicated and therefore merits a separate study. The reader is referred to Meleshko and Van Heijst 
(1994) for a discussion of  the rediscovery of  the Chaplygin dipole and some of its characteristics. 

4. Simulation of the Lamb dipole 

As mentioned in the preceeding section, the Lamb dipole moves in an infinite inviscid fluid 
with uniform velocity along a straight line and without change of  form. In this section the effects 
of  the finiteness of  the domain and nonzero viscosity on the behaviour of  the Lamb dipole and its 
characteristics are investigated numerically, using the finite-difference method outlined in Section 2.2. 

The domain used for the computation measures 6x6  and is divided in 256x256 grid cells, so that 
Ax = Ay ~ 0.023. The Reynolds number is Re = 1Iv = 1000. The Lamb dipole is initialized with a 
velocity U0 = 2 in the positive x-direction and with a radius a = l, so that initially k = Ko/a ~ 3.8317. 

4.1. The L amb  dipole at t = 0 

When placed in a finite domain the Lamb dipole is affected by the boundaries of  the domain. With 
(periodic) boundaries symmetrically on either side, parallel to the dipole axis, a flow in the direction 
opposite to the dipole's motion is induced and the dipole is slowed down: it moves with a velocity 
U < U0. The dipole is slowed down by the effect of  the image dipoles in the image domains on 
either side of  the computational domain. And the narrower the domain is, the lower is the dipole's 
velocity U at a given U0. Since the flow configuration is symmetric about the dipole's axis, the 
x-axis, the dipole continues to move along this axis, no matter what shape deformations may occur. 

In the frame co-moving with the dipole the relation between vorticity and streamfunction is a 
linear one, given by Eq. (9): co/0 = k 2. The velocity of  the co-moving frame with respect to the 
nonmoving frame, i.e. the dipole's velocity U, is found by minimizing the "scatter" around this 
line in an co, 0-plot. In minimizing the scatter, only absolute vorticity levels larger than 0.1 times 
the vorticity maximum (/)max are used. This is done to omit the region of  low-value vorticity where 
later in the evolution nonlinearities occur (see for instance Fig. 3). The range from 0.1 to 1 times 
comax is divided in 10 vorticity bands and in each band the scatter - the horizontal spread A 0 
in the co, 0-points - is averaged. Minimum scatter is reached when the sum of these averages is 
minimal. Table 1 lists dipole velocities for a number of  domain widths. For the 6 x 6 domain used 
in this paper the initial velocity of  the dipole appears to be U = 1.825. In the co-moving frame the 
streamline 0 = 0 defines the circular edge of the dipole. Numerically, it is found in this way that 
the dipole's radius is a = 0.999. 

4.2. The L a m b  dipole at t = 100 

Fig. 2 shows contours of  vorticity of  the evolved dipole at time t =  100; the dipole has then 
moved 17 times through the whole domain in the x-direction. The +0.1 contour shows that the 
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Table 1 
The initial velocity U of  a L a m b  dipole initialized with U0 = 2 and a = 1, centred in a domain with periodic boundaries 
at y =  ± yw 

Yw 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 

N 128 128 128 256 256 256 512 512 512 

U 1.591 1.825 1.906 1.940 1.960 1.970 1.977 1.988 1.987 

Note: The number of  grid cells N is varied along with the width of  the domain to keep the mesh size more or less the 
same. The computations presented in Sections 4 and 5 are done with yw = 3 and N = 256. 
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Fig. 2. Contours of  vorticity of  the evolved Lamb dipole at time t = 1 0 0 .  Contours are drawn at ! 0 . 0 1 ,  

+0 .1 ,  4-1, 4-2, 4-3, + 4 ,  + 5  and +6; positive is solid, negative is dashed. The dotted line is the streamline ~ b = 0  

in the frame co-moving with the dipole, which marks the edge of  the dipole. (At t = 0 the line ~ = 0 is a circle of  
radius 1.) 

dipole leaves a "tail" o f  low-value vorticity behind as it moves.  That such a tail is formed is 
inherent to the grid method, since for the value o f  the vorticity at grid point i , j  at time t + At  
the value o f  the vorticity at time t in all 8 grid points around i , j  is needed. This "extra" vorticity 
is low-level  vorticity and it dies out due to viscous effects, so the influence it has on the dipole's 
motion is minimal 1 , and largest at the beginning o f  the computation when the vorticity distribution 
has to "adapt" itself to the boundary conditions. The extra vorticity shows up as a small increase in 
the total circulation and as a small dip in the dipole's velocity after the first cycle when it reaches 
its own tail (at about t = 4 in this case). The +0.01 contour encloses an area o f  lower-level vorticity 
generated in previous cycles as the dipole interacts with its own tail. 

The dotted line in Fig. 2 is the streamline ~9 = 0: the edge o f  the dipole. It can be seen clearly 
that the size o f  the dipole has increased. Along a line through the extrema o f  vorticity the radius 
is a = 1.586. The increase in size is a consequence o f  viscous effects, which spread the vorti- 
city over a larger area. At the same time the extrema o f  vorticity decrease: in Fig. 2 their values 

Like the dipole itself, the extra vorticity is symmetrically arranged with respect to the dipole axis, hence it does not 
cause the dipole to move away from its initial line of  motion. 
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Fig. 3. The relation between vorticity ~o and streamfunction ~ of  the full domain with the evolved dipole at time t - 100 
is given by the curve (the two dipole halves) and the more or less horizontal line at low vorticity values (the area outside 
the dipole halves). The central part of  the graph shows the values at the edge of the dipole and at its axis. The two 
dashed lines are discussed in the text. 

are 4-6.610, whereas initially their values were 4-22.127. The edge of the dipole is not a perfect 
circle: at the rear side it is a little stretched with respect to a circle, but only some 2%, hence, the 
evolving dipole remains fairly circular throughout its evolution. 

The line 0 = 0 in Fig. 2 follows from the streamfunction in the frame moving along with the 
dipole. The velocity of  the dipole is found by minimizing the "scatter" in the co, 0-plot shown in 
Fig. 3. The relation between vorticity and streamfunction at t =  100 is no longer linear, both in 
the branches of the two dipole halves (the two curved lines) and around the edge of the dipole. 
The latter is in Fig. 3 the region of small vorticity values at the centre of  the graph; also the tail 
of  the dipole gives a contribution in that region. This region is therefore omitted from the graph 
when minimizing the scatter around the co, 0-curve to find the dipole's velocity, as outlined in 
Section 4.1. For the dipole of Fig. 2, a velocity U = 0.606 is found, which is the dipole's velocity 
in the nonmoving frame at t = 100. 

It has been shown theoretically, numerically and experimentally (see e.g. Joyce and Montgomery, 
1973; Montgomery et al., 1992; Pasmanter, 1993; F16r and Van Heijst, 1994) that under certain 
conditions the steady-state structures which emerge from 2D flows show a relationship between vor- 
ticity and streamfunction of  the form co o(sinh(A0). The long-dashed line in Fig. 3 is the function 
co = 2.2 sinh(20). This curve fits the nonlinear part of  the co, 0-relation reasonably well. The numer- 
ical factor in front of  the sinh depends on time: it decreases with time (at t = 50, for instance, it 
is 3.1 ). With the value A = 2.0 the sinh(A0)-function fits the curve best: with A = 1.9 the curvature 
is too weak, and with A =2.1 the curvature is too strong. At this stage in the evolution, there is 
no sinh(20)-function that covers the entire co, 0-relation: the dipole is still linear at the extrema of 
vorticity. 

The linear part of  the co, 0-relation at the vorticity minimum is indicated by the short-dashed 
line in Fig. 3 (a similar line can be drawn at the vorticity maximum). The angle of this line 
shows that coo((2.869)20 at the vorticity extrema. Hence, the value of k in the part of  the dipole 
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Fig. 4. Profile of vorticity along a line through the extrema of vorticity of the evolved dipole (solid line) at time t = 100, 
compared with the profile of an initial Lamb dipole (dashed line) fitted to the radius and the maximum of  vorticity of 
the evolved dipole. For clarity only the positive half of the dipoles is shown; the negative half looks the same, but is 
mirrored in the origin. 

that is still linear is k = 2.869, showing that k has decreased with time (at t = 0, k was equal to 
K0 ~3.832). Assuming that in this linear part relation (11) is still valid, the radius of  the dipole 
is alin = Ko/k  ,.~ 1.336, which is larger than the initial value a = 1. Combining the value of  k with 
the radius a found from the ~9 = 0 streamline above shows that ak is well above 4 (with a = 1.586, 
ak=4.551) .  The latter result is of  course no more than qualitative, since k is determined from the 
linear part of  the dipole only, whereas a follows from the entire dipole. Yet, it shows that as the 
dipole evolves both a and ak increase and k decreases. 

These results are different from results reported by Swaters (1991), who assumes that ak is 
constant in time and then finds that a is constant in time, so that also k is constant in time. The 
origin of the difference in results lies in the fact that Swaters uses Rayleigh damping (like the 
damping due to an Ekman layer at the bottom of  a rotating tank, in experimental terms) rather than 
horizontal diffusion, as can be seen from Swaters' vorticity equation: 

~co 1 
63~- + J ( c o ' O ) =  Rco '  ( 1 5 )  

where R is the Rayleigh number. According to this model, there is no mechanism to spread vorticity 
over a larger area, hence it is no surprise that the dipole radius remains the same throughout the 
dipole's evolution. 

Since the co, @-relation of the evolved dipole is not linear, this dipole is no longer a Lamb dipole. 
Yet, it is still "Lamb-like", meaning that it still resembles a Lamb dipole fairly closely. A straight 
line co=ke2xt~t connecting the extrema of the co, @-relation (Fig. 3), for instance, results in a value 
of kext = 2.559, only about 10% less than the k-value found from the linear parts of  the co, @-relation 
(k =2.869). 

That the evolved dipole is still Lamb-like can also be seen from a cross-section of  the vorticity 
profile along a line through the vorticity extrema. The solid line in Fig. 4 shows the profile of  the 
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Fig. 5. Some quantities of the evolving Lamb dipole as a function of  time, normalized to unity at t = 0. For clarity not 
all quantities are put in a single graph; both (a) and (b) show the maximum of vorticity (tOm,x) and the velocity (U)  
of  the dipole for comparison. The absolute value of  the vorticity minimum (]COmi,]) always equals co . . . .  See the text for 
details on the quantities given by the other lines. Absolute values of  all quantities at three moments in time are given in 
Table 2. 

evolved dipole. This dipole has a radius a =  1.586 and a maximum of vorticity of  6.610. These 
values can be used to determine the characteristics of an initial Lamb dipole that "fits" the evolved 
dipole by adapting the parameter U0 in Eq. (10b). The profile of  this "fitted" Lamb dipole is shown 
in Fig. 4 by a dashed line: the resemblance between the two lines is rather good. All in all, the 
evolved dipole still has many characteristics similar to those of an initial Lamb dipole: the evolved 
dipole is Lamb-like. 

In their laboratory experiments F16r and Van Heijst (1994) found also that the profile of  an 
evolved dipole matches that of  a Lamb dipole quite well, and the profile of  their evolved dipole 
"peaks" somewhat more in the vorticity extrema than the profile of  a Lamb dipole, as is the case 
in Fig. 4. Unlike the experimental results, though, the evolved dipole of Fig. 4 shows no oppositely 
signed vorticity outside the vortex, indicating that it is an experimental feature. 

4.3. The evolution of the Lamb dipole 

Fig. 5 shows some quantities of  the evolving Lamb dipole as a function of  time between t = 0 
and 100; the quantities are normalized by their initial values to ease a comparison between the rates 
of  increase and decrease. Absolute values of  these quantities are listed in Table 2 for three moments 
in time. It is not possible to fit any of  the decaying quantities with an exponential function: the 
best least-square exponential fit is a curve which decreases slower at the beginning of the evolution 
than the computed values do, and faster later on. 

The velocity of the dipole, U, is determined by minimizing the scatter in the co, 0-relation in the 
co-moving frame, as outlined in Section 4.1. In this co-moving frame the 09, 0-relation has a linear 
part near the extrema of vorticity - as in Fig. 3 - and this linear part determines the value of  k, 
which decreases in time. As the vorticity is spread over a larger area, the radius a of the dipole 
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Table 2 
Absolute values at three moments in time of the quantities 
of  the evolving Lamb dipole plotted in Fig. 5 

Quantity t 0 t = 5 0  t = 1 0 0  

fOmax 22.127 11.129 6.610 
U 1.825 0.939 0.606 
a 0.999 1.338 1.586 
k 3.833 3.351 2.869 
ak 3.830 4.483 4.551 
alin 1.000 1.144 1.336 
F+ 13.658 10.152 8.530 
E 24.043 13.323 8.978 
H 184.499 61.994 30.412 

increases; see Fig. 5a. This radius is the point where the streamfunction 0 equals zero (in the co- 
moving frame) along a line through the extrema of  vorticity. The product a k, also shown in Fig. 5a, 
increases in time to a more or less constant value of about 4.54. As mentioned in Section 4.2 this 
is only a qualitative result since k is determined from the linear part of  the dipole only, whereas 
a follows from the entire dipole. Assuming that for the linear part of  the ag, 0-relation Eq. (11 ) 
remains valid, a radius for this linear part alin = Ko/k can be computed. This quantity increases in 
time too, but not as fast as the real radius of the dipole, as Fig. 5a shows. 

Nielsen and Juul Rasmussen (1997) derived for the decaying Lamb dipole the time dependence 
of  the velocity and the radius: 

U(0)a2(0) 
U(t) - vK~t + a2(0) ' (16a) 

a(t) = ~/vK2t 4- a2(0), (16b) 

and they find that these functions describe their results quite well (their simulations are done with a 
spectral method and are terminated at about t = 45 in units of  the present paper). Fig. 6 shows that 
the increase of the radius of the Lamb dipole of Fig. 5 is reasonably well described by Eq. (16b), 
but the velocity decreases considerably faster than is predicted by Eq. (16a). The origin of this 
discrepancy between Eq. (16) and the numerical results is not clear. 

The decay of  the vorticity is determined by viscosity. Assuming that co = kZ0 is valid throughout 
the evolution of  the dipole, the purely viscous decay of the vorticity - which follows from the 
vorticity equation (1) - is given by 

~3CO ~72co kZco 

0t Re Re (17) 

The solution of  this differential equation is 

co(t) = co(t = 0) exp(-k2t/Re). (18) 

With R e =  1/v= 1000 and k=Ko (from Eq. (11) with radius a =  1) in this equation, the maximum 
of vorticity decreases faster than the vorticity from the computations does. At t = 100, for instance, 
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Fig. 6. Velocity U and radius a of the evolving Lamb dipole of Fig. 5 compared with the functions given by Eq. (16), 
using the initial values given in Table 2 for U(0) and a(0). Both U and a are shown in absolute values in this graph. 

the computed maximum of vorticity is 6.610 and the value using Eq. (18) is 5.097. Fig. 5a shows 
that k actually is a function of time. Using the k(t) found from the computations in Eq. (18) results 
in a vorticity maximum that decreases slower than the computed vorticity (at t = 100 the value 
is 9.716). Since both the velocity and the radius of the dipole change in time, what effectively 
happens is that the Reynolds number Re, defined by Eq. (4), also depends on time (cf. Nielsen and 
Juul Rasmussen, 1997): 

a(t)U(t) 
Re(t) -- va(O)U(O)" (19) 

Using the values from the computation for k(t) and Re(t) in Eq. (18) gives a decrease of the 
maximum of vorticity which is even faster than the decrease is for constant Re and k =K0 in 
Eq. (18). 

Neither of these attempts are very successful in describing the decay of the maximum of vorticity 
nor the decay of the vorticity is clearly not as fast as expected from simple scaling arguments. This 
indicates that as soon as the co, 0-relation is no longer linear, the decay of the vorticity is not well 
described by the above model. (This decay cannot be affected much by "numerical viscosity", since 
the decay of the Rankine vortex, discussed in Section 2.3, is described quite well with the numerical 
model.) If the Lamb dipole is placed in an infinite fluid without viscosity, it moves along a straight 
line with constant velocity and without change of form, and the co, 0-relation remains linear, as 
mentioned in Section 3. The dipole's motion is solely due to the nonlinear effects in that case. 
Adding viscosity means that vorticity is spread over a larger area and apparently the co, 0-relation 
then becomes somewhat nonlinear, so that also nonlinear effects participate in changing the form of 
the dipole and the co, 0-relation. Since the boundaries of the domain affect the velocity of the dipole 
(see Table 1), these boundaries no doubt also affect the shape of the dipole and the co, 0-relation 
via the nonlinear advection effects. 

Fig. 5b shows the decay of three quantities integrated over the whole domain: the positive cir- 
culation F+ (the circulation of all areas of positive vorticity), the energy E and the enstrophy H; 
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Fig. 7. Decay of  energy E and enstrophy H in time as in Fig. 5, compared with the functions given by Eq. (20), using 
the initial values given in Table 2 for U(0)  and a(0). All curves are normalized to unity at t = 0. 

their definitions are given in Eq. (3). The positive circulation does not decrease as fast as the maxi- 
mum of vorticity does: viscosity spreads the vorticity faster over a larger area - thus decreasing the 
extrema - than that it decreases vorticity in the domain as a whole. Nielsen and Juul Rasmussen 
(1997) derive from Eq. (12) for the decaying Lamb dipole the time dependence of the energy and 
the enstrophy: 

2na2( O )U~ (20a) 
E(t) = vK~t/a2(O) ÷ 1' 

H ( t )  = (vK2t/a2(O) + 1 )2' (20b) 

and they find that these functions describe their results quite well. Fig. 7 shows that this is also the 
case for the dipole described here, especially for the enstrophy. 

In the computations described here there are 256 grid cells in either direction. Using 128 grid cells 
gives basically the same results, although there are somewhat larger fluctuations on the curves of 
Fig. 5, especially at the beginning of the computation (until about t = 10), when the initial vorticity 
distribution has to "adapt" itself to the boundary condition. Decreasing the number of  grid cells 
further makes these differences and fluctuations larger, also because the resolution of  small-scale 
effects becomes worse. Similarly, increasing the number of  grid cells reduces the small fluctuations 
visible in Fig. 5 but this does not alter the overall results. 

4.4. The fate of the decaying Lamb dipole 

If the computation continues after t = 100 the same trend continues: the radius increases, the ex- 
trema of vorticity decrease, the velocity decreases, etc. Eventually, viscosity has spread the vorticity 
over the entire domain and a clear dipolar structure is no longer defined. The dipole's co, ~9-relation 
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Fig. 8. (a) Velocity U and (b) radius a of  the evolving Lamb dipole as a function of time, both normalized to unity at 
t = 0 ,  for five different Reynolds numbers Re: 100, 200, 500, 1000 and 10000. (The Re 1000 case is given in Fig. 5 
until t = 100.) 

then no longer has a linear part near the vorticity extrema, as is still the case in Fig. 3, and it can 
be described entirely by co = C sinh(20), with C depending only on time. 

Continuing the computations until that stage is hardly useful since (long) before that the dipole 
has become so big that the effects of  the boundaries become significant. At t = 100 the dipole has 
a diameter of  about 3.2, whereas the domain has a width of  6 (see Fig. 2), so that the size of  
the dipole is roughly the same as the distance between the edges of  the dipole and of  its periodic 
images in the domains on either side of  the computational domain. 

4.5. The effect of the magnitude of the Reynolds number 

Using a Reynolds number Re larger than the Re = 1000 used for the above computations means 
that the viscous decay is less strong, so that the dipole's radius grows slower and the extrema of  
vorticity decrease slower, and hence the dipole's velocity decreases slower. This implies that the 
dipole remains Lamb-like for a longer time. 

Vice versa, for larger viscosity values the dipole grows faster and its velocity decreases faster. 
And the tail of  vorticity left behind by the dipole becomes more and more pronounced as viscos- 
ity increases. How long the evolving dipole retains its Lamb-like characteristics depends on the 
magnitude of  the viscous effects: the smaller the Reynolds number is, the sooner the dipole has lost 
its Lamb-like characteristics. 

Fig. 8 shows the relative change in the velocity U and the radius a of  the evolving Lamb dipole 
for five values of  the Reynolds number until t = 30. The computations are stopped at that moment 
since the radius of  the dipole in the Re = 100 case is then more than 2: the dipole has become so 
large that the front of  the dipole is within its own tail, and the 0 = 0 line is no longer a closed line 
around the dipole, as is the case in Fig. 2 (which is for R e =  1000 at t =  100). The co, 0-relation 
of  this dipole still shows a more or less linear part near the vorticity extrema, but that part is quite 
small. In fact, the co, 0-relation can be described very well, including the extrema of vorticity, by 



206 J.H.G.M. van Geffen, G.J.F. van Heijst/Fluid Dynamics Research 22 (1998) 191-213 

the function co = 1.34 sinh(20): the dipole has become entirely nonlinear (the scatter around this 
curve is bigger than the scatter in Fig. 3, but the relation is quite clear). 

The 0 = 0 line for Re = 200 is at t = 30 still fairly circular: it is stretched at the rear side only 
about 5% with respect to a circle. The tail of low-value vorticity of the Re = 200 dipole is at t = 30 
somewhat more pronounced than the tail in Fig. 2, and dipole's velocity (0.461) is smaller and its 
radius (1.725) is larger than those of  the dipole in Fig. 2. The co, 0-relation clearly shows a linear part 
at the extrema of vorticity, like in Fig. 3 [the nonlinear part is described well by co = 1.92 sinh(20)]. 
In other words, the evolved dipole in the Re = 200 case is at t = 30 still Lamb-like, whereas the 
evolved dipole in the Re = 100 case has lost most of  its Lamb-like characteristics. 

The finite-difference method used here allows for inviscid computations and a run done with- 
out viscosity shows that the Lamb dipole moves, indeed, with constant velocity, constant vorticity 
extrema and constant radius: all quantities fluctuate within 0.5% around their average for t = 0 to 
t = 30, except for a very small decay of the order of  10 -5 t, which may be attributed to "numerical 
viscosity". This result shows that the decay of the Lamb dipole described above is caused by viscous 
rather than numerical effects. 

5. Other symmetrical dipolar vortices 

As discussed above, the Lamb dipole placed in a finite domain with a viscous fluid remains 
Lamb-like for a long time, which shows that the Lamb-like structure is a very stable one. Do other 
dipolar vortices that are no solution of the inviscid vorticity equation but which have symmetry 
properties like the Lamb dipole (and thus initially have a net linear momentum) assume Lamb-like 
characteristics? Or, in other words: do such vortices evolve to a Lamb-like dipole? To address 
this question three examples of  other dipolar vortex structures are discussed below z. The Reynolds 
number is Re = 1000 and the domain and grid size are as in Section 4. 

5.1. Circular dipole with uniform vorticity patches 

The first alternative dipole is circular and has two halves of oppositely signed uniform vorticity: 

coo, r<a,  y>O,  

co= -coo, r<a,  y < 0 ,  (21) 

O, r>a.  

Due to its dipolar vorticity distribution this vortex moves in the positive x-direction, like the Lamb 
dipole of the previous section. 

Fig. 9 shows the vorticity distribution and the co, 0-relation of the initial vortex using coo = 10 
and a = 1, and of the evolved vortex at t = 4 and 8 (the moments in time when the dipole has 
moved through the whole domain a little more than once and twice, respectively). As the dipole 
moves it leaves behind a tail of  vorticity as discussed before for the Lamb dipole, but here the 
tail is more pronounced and it has a larger vorticity level. The reason for this is that a step-wise 

2 A recent numerical study by Nielsen and Juul Rasmussen (1997) shows that a Lamb-like dipole also emerges from a 
laminar jet  of vorticity and from a turbulent patch of  vorticity, both having a net linear momentum at initialization. 



J.H.G.M. van Geffen, G.J.F. van Heijst /Fluid Dynamics Research 22 (1998) 191-213 207 

-2 

-3 

\ i I 

I I I 

-2 i 0 
i i t 

t = O  
I 

2 
i 

10 

-3 
3 

3 

2 

1 

0 

-1 

-2 

-3 
-3 

3 

2 

1 

0 

-1 

1 

0 

-1 

-2 

3 
3 

t = 4  
! I I I I 

-2 -1 0 1 2 
i i i i i 

5 

0 

-5 

-10 

10 

5 

10 

0 

-5 

-10 
I 

-1 
i 

5 

0 

-5 

i 

I 

-0.5 
i 

t = O  
I I 

0.5 1 
t i jf;~4~'--- 

,Of 

• . t  L , i  

i i i i 

-0.5 0.5 1 

t = 4  

i i 

/ 

t = 8 -10 t = 8 
I I i I i I I I 

-2 -1 0 1 2 3 0 0.5 1 
x 

I I 

-1 -0.5 

Fig. 9. Contours o f  vorticity (left)  and co,~b-relations (right) o f  the initial dipole ( top) given by Eq. (21) with COo = 10 
and a = l ,  and o f  the evolved dipole at t = 4 (middle)  and t = 8 (bot tom).  In the left column vorticity contours are drawn 
at ±0.1,  ±3 ,  ± 6  and ± 9 ;  posit ive is solid, negative is dashed. The dotted lines in the right column indicate @ = 0 .  



2 0 8  J.H.G.M. van Geffen, G.J.F. van Heijst/Fluid Dynamics Research 22 (1998) 191 213 

10 

6 . , : ,  t I '1,  I 

0 ~ 

0 .5  1 

T - ' - - - - - - T  l 
t = 0  - -  

t =  10 . . . . .  
t = 20 .......... 
t = 30 . . . . .  

10 

0 

-5 

10 

1.5 2 2 .5  
y ~' 

l I I i i / 

w = 90 . . . .  

_ /  

t = 30 
I I I I I 

-1 0 .5  0 0.5 1 

F i g .  10. Profiles of vorticity along a line through the extrema of vorticity of the initial ( t  = 0;  solid line) dipole given by 
E q .  ( 2 1 )  and of the evolved dipole at t =  1, 10, 2 0  a n d  30 .  For clarity only the positive half of the dipoles is shown; 
the negative half looks the same, but is mirrored in the origin. 

Fig .  11. Relation between vorticity and streamfunction of the evolved dipole initially given by Eq .  ( 2 1 )  with o)0 = 10 and 
a = 1, a t  t = 30 .  The dashed line is the function o) = 9~,.  

vorticity function as in Eq. (21) is poorly represented by a grid method and there are relatively 
large fluctuations in the vorticity on top of  the vortex and in its wake. As the middle row of  Fig. 9 
shows, some oppositely signed vorticity is also created at the front of  the moving dipole. This 
"extra" vorticity lies symmetrically about dipole's line of  motion, so the dipole continues to move 
along the same straight line. 

The fluctuations on top of  the vortex can also be seen in the profiles of  vorticity shown in Fig. 10. 
At t = 1 there are clearly large spiked fluctuations in the vorticity. As time evolves, viscosity smears 
out these fluctuations and the sharp edges of  the vorticity distribution are smoothed quite quickly. 
At t = 10 the vorticity profile is more or less flat again at the top of  the vortex, but it has round 
edges. Later on the vorticity distribution becomes more and more smoothed, with at t = 30 a profile 
very similar to that of  a Lamb dipole. 

Fig. 11 shows the co, 0-relation of  the evolved dipole at t = 30, which is an almost straight line 
for most of  the dipole: only at the centres of  the dipole halves the relation is not yet linear. As 
time goes on, these small nonlinearities disappear too and the entire co, 0-relation becomes linear: 
the dipole initially given by Eq. (21) has become a Lamb dipole. After that the decay described 
in Section 4 sets in and the co, 0-relation becomes nonlinear again, but now with tips pointing the 
other way, as in Fig. 3. 

Determining the velocity of  the evolving dipole by minimizing the scatter in the co, 0-plots (as 
done in Section 4) is at the beginning of  the evolution not very reliable but it appears that the initial 
velocity is about 1.83, after which the velocity decreases. The velocity of  this particular dipole is 
comparable with the velocity of  the Lamb dipole described in Section 4. The reason for this is 
the (arbitrary) choice of  the value of  coo: with coo = 10 the initial circulation, energy and enstrophy 
appear to be of  the same order as those of  a Lamb dipole with U0 = 2 at t = 0. 



J.H.G.M. van Geffen, G.J.F. van Heijst/Fluid Dynamics Research 22 (1998) 191~13 209 

Had the evolution started with a different CO0-value, then the dipole's velocity would have been 
different, since for lower COo the dipole has a lower velocity. The overall picture would be the same, 
though: after some time the dipole initially given by Eq. (21) has evolved into a Lamb dipole 
due to viscous and nonlinear effects, which is followed by the usual decay of  the Lamb dipole. 
The time scale at which dipole Eq. (21) becomes a Lamb dipole depends not on COo, it appears 
from simulations, but on the magnitude of  the viscous effects: the larger viscosity is, the faster a 
Lamb-like dipole is formed. 

5.2. Dipole consistin9 of two elliptic uniform monopoles 

Another initial case consists of  a set of  two ellipses of  oppositely signed uniform vorticity: 

(X - -  Xo) 2 ( y  - -  d )  2 
COo, a2 + b ~  < 1, 

CO = (x - Xo) 2 (y  + d)  2 
--COo, a2 + b ~  < 1, 

0, elsewhere, 

(22) 

where (xo, d) and (Xo,-d) are the centres of  the two ellipses and a and b the axes, with d > 0  and 
a >b.  Single elliptic monopolar vortices with uniform vorticity (Kirchhoff vortices) are unstable if 
their aspect ratio (a/b) is larger than 3. In this study a = 2b is used. In view of the size of  the 
domain, a = 1 is a good choice. Since the ellipses are meant not to overlap each other, d should be 
larger than b. To avoid large influences of  the upper and lower boundaries, the value of  d should 
not be too large. 

The dipole of  Eq. (22) appears to evolve into a Lamb-like dipole, just like the dipole of  Eq. (21) 
does. In this case, however, viscosity and nonlinear effects also have to mould the two ellipses into 
semicircles. If  the two ellipses are right next to each other (d = b) the formation of  a Lamb-like 
dipole takes somewhat more time than is the case for dipole, Eq. (21). And the larger d is, the 
more time the process takes. Again, the value of  coo is not so important for the timescale of  the 
formation of  a Lamb-like dipole (this is mainly determined by the Reynolds number), but it is more 
important here than for dipole Eq. (21) since nonlinear effects are more important here. 

As an example, consider the ellipses of  Eq. (22) with d = 0 . 7 ,  a = 2 b =  1 and COo= 10. Fig. 12 
shows contours of  vorticity at some early stages in the evolution. Since a grid method represents a 
step function as in Eq. (22) poorly, fluctuations in the vorticity on the vorticity patches and in their 
wake arise - as discussed in relation to dipole Eq. (21). The initial form of  the two patches is an 
ellipse, but their form changes immediately as they move closer together. At the same time viscosity 
smooths the sharp edges of  the step function. At t = 2.5 the two patches have come close together 
and can be considered as one single vortex structure. There is still some oppositely signed vorticity 
at the front of  the dipole halves. This vorticity is created initially by grid effects in the wake of  
the vortex and transported forward in between the two patches, as can be seen in the middle row 
of  Fig. 12. When this vorticity arrives at the front of  the patches, it is pulled outward and then 
transported along side to the back of  the vortex again. 

The velocity of  the dipolar structure can be determined by minimizing the scatter in the CO, ~- 
relation. Although early in the evolution this procedure is not very reliable, it gives a good idea of  
the velocity. At t = 0.5 (top-right in Fig. 12) the velocity is about 1.48, and at t = 1 it is about 1.44. 
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Then the velocity decreases sharply to about 1.30 at 2 and for some time it remains almost constant. 
Between t = 2.5 and t = 12 the velocity (which can then be determined reasonably well) oscillates 
as it slowly decreases. Until t = 12, apparently, there are oscillations in the form of  the two patches 
while a single dipolar vortex is being formed. After t =  12 the velocity simply decreases due to 
viscous effects: the main shape of the dipole is formed and it can assume Lamb-like characteristics. 
Its 09, ~k-relation at t = 30 still shows clear nonlinearities throughout the entire dipole (more clear 
than in Fig. 11), but as time evolves further these nonlinearities disappear and a true Lamb-like 
dipole is formed, which subsequently decays as in the cases discussed before. 

5.3. Dipole consistin9 of two elliptic Bessel-type monopoles 

As a third example a dipole is constructed of two elliptic monopoles as in Section 5.2, but then 
with monopoles which have an initial vorticity distribution like that of  a Bessel-type monopole. 

The circular "Bessel monopole" is a steady solution of the inviscid vorticity Eq. (8) assuming a 
linear relation between vorticity and streamfunction as in Eq. (9): 

09= ~ k2m~9, r<a, (23) 
L O, r>a 

and choosing for a monopolar solution. The streamfunction of this solution is given by 

i~= { 2rtkm~l(akm)J°(kmr)' r<.a, 
- F  (24) 

log(r/a), r ~ a, 

where F is the total circulation of the monopole. The first nonzero root of  J0 determines the constant 
km: 

Jo(akm)=O ~ akm~2.4048. (25) 

The Bessel monopole has single-signed vorticity with zero vorticity at the edge. 
To form an elliptic Bessel-type monopole, an "equivalent radius" d for using in Eq. (24) is 

defined as 

2ab 
a =  a + b' (26) 

where a and b are the axes of the ellipse, as in Eq. (22). This radius is formed like the relation 
between radius, surface and circumference of a circle, where the circumference of the ellipse is 
approximated by ~(a +b) .  The radial distance ro with respect to the centre of  the ellipse in Eq. (24) 
is then given by 

a2b 2 

r~ = a2 + ( b  2 _ a2)sin 0' (27) 

where 0 is the angle with respect to the positive x-axis. This elliptic Bessel monopole is not a 
solution of the inviscid vorticity equation. 
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Initially, two of these Bessel monopoles, one with positive and one with negative vorticity, are 
placed in the arrangement given by Eq. (22). Although both initial monopoles have a linear co, 0- 
relation, the combination does not have a single linear co, 0-relation. Since the initial vorticity 
distribution is rather smooth, the vorticity fluctuations as seen in Fig. 12 are in this case consid- 
erably smaller. Again a Lamb-like dipole is formed, but it takes more time than it takes for the 
dipole of  Eq. (22) at the same distance d. Where the origin of  this difference lies is not immedi- 
ately clear. For dipole Eq. (22) with its step-wise initial vorticity distribution both nonlinear and 
viscous effects are stronger than for the much smoother Bessel-type monopoles. As a result of  
this the spreading of  the vorticity for dipole Eq. (22) towards a circular form is faster and it as- 
sumes Lamb-like characteristics quicker than the dipole with initially Bessel-type elliptic monopoles 
does. 

6. Concluding remarks 

If a Lamb dipole is placed at the centre of a finite, rectangular domain with its axis parallel to 
the boundaries at y = + yw, then the dipole's velocity U is lower the narrower the domain is. If  
viscosity is present the vorticity of  the dipole is gradually spread over a larger area, i.e. the radius 
a of  the dipole increases as time evolves. At the same time the vorticity extrema decrease, as a 
result of  which the dipole's velocity decreases. 

The Lamb dipole initially has a linear relation between vorticity co and streamfunction 0, namely 
co=kZ0, where the value of  k follows from a k ~  3.8317. As the dipole moves and grows, the co, 0- 
relation becomes nonlinear, at first near the edge and the axis of  the dipole, but as time goes on 
the nonlinearity spreads towards the vorticity extrema. As long as there is still a linear part in the 
co, 0-relation around the extrema of vorticity, a k-value can be found. It appears that k decreases as 
function of  time, but the product ak  increases with time. During this evolution the dipole retains 
its major characteristics: a more or less circular form and a more or less linear co, 0-relation. These 
characteristics are named "Lamb-like". 

As the dipole evolves further, a larger and larger part of  the co, 0-relation becomes nonlinear, until 
finally the entire co, 0-relation can be described by co = C sinh(20) for a certain constant C, which 
depends only on time. The dipole has then lost its main Lamb-like characteristics, although it is still 
circular to within a few per cent. The time scale at which this process takes place is determined 
mainly by the strength of  the viscous effects; it does not so much depend on the strength of  the 
initial dipole (a stronger initial dipole only moves faster). 

Since the Lamb dipole appears to retain its characteristics for a long time, tests have been done 
with other 2D dipolar vorticity structures as initial vorticity distribution. The alternative dipoles 
studied have the same symmetry property as the Lamb dipole: two patches of  oppositely signed 
vorticity which lie symmetrically about the line of  motion. These dipoles evolve into a Lamb-like 
dipole, followed by a decay like that of  the Lamb dipole itself. The time it takes to form a Lamb- 
like dipole depends on the initial vorticity distribution: the further it is away from a Lamb dipole, 
the more time it takes. 

The main conclusion, therefore, is that a dipolar vortex with Lamb-like characteristics is a very 
stable vorticity structure in a viscous finite fluid, and initial vorticity distributions that are not too 
different from a Lamb dipole evolve to a dipolar structure with Lamb-like characteristics. 
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