Collapse interactions of finite-sized two-dimensional vortices
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The point vortex model predicts that a certain configuration of three point vortices leads to a
collapse of these vortices to one point. Numerical simulations have been performed to investigate
the effect of a finite vortex size on this two-dimensional collapse interaction. The paper presents
results obtained with contour dynamics simulations of patches of uniform vorticity, and results
obtained with finite difference simulations of vortices with continuous properties. In addition, the
effect of viscosity and the presence of impermeable domain boundaries are investigated. The results
show that the motion of finite-sized vortices is quite similar to the motion of point vortices as long
as the mutual distance between the vortices is larger than their size. When the vortices are closer
together their shapes start to deform and the subsequent evolution is different from that of the point
vortices, and an actual collapse to one vortex does not take placd99@ American Institute of
Physics[S1070-663(197)00311-5

I. INTRODUCTION initial patch size(relative to the initial distances between the
e patch centepsas the main parameter of interest. In the sec-
ond set of numerical simulations, the point vortices are re-
placed by vortices with a smooth vorticity distribution. The
evolution of these vortices has been calculated by solving the
two-dimensional vorticity equatiorincluding the viscous

In his remarkable dissertation, Gil¢' established th
existence of a special self-similar motion of three point vor-
tices of chosen intensity located initially at specific positions
on an infinite plangsee also Arekt al? for historical and
scientific background In this special case the vortex trajec-

tories have the form of logarithmic spirals with a commonterm_?husmg. a f|n|tet—.d|ffe;(ra]n;:e .TebthOdd' d d h
origin. Depending on the signs of the intensities of the vor- € main questions that will be addressed are. how are

tices, they can either escape to infinilgs is the case for ]Ehgttraj_ecto??ﬁ and I_he S?%SEstqf tthhe \{o;ltlces affefctgd by_tthe
which Gradli constructed a solutionor move inward and Inite size of the vortices: atis the influence of viscosity

collapse in the origin in a finite time. Later studi@éovikov on the process of vortex interaction? Finally, what is the
and SedoV, Aref? Kimura®®) have revealed more general effect of solid domain boundaries on the vortex collapse for

o . i ices?
conditions for point vortex collapse to occur, namely, somethe case of point vortices?

specific relations between the intensities and the initial posib . ;I'I‘(lje rer_n?_lnder fo{hthe Ipap_er IIS or_g?mzetd as f(l)lllows. .A
tions of the vortices. Although the collapse is in itself an riet description ot the classical point-voriex collapse 1S

interesting phenomenon, one may question the physical Siqgiven in Section Il. The contour dynamics simulations of the

nificance of this particular type of highly idealized point vor- nteraction of initially circular patches are discussed in Sec-

tex interaction. The point vortex model has been proven td'on i, Wh"? the rgsults O.f the finite-dif.ferer_\ce.simulations
be very powerful in describing the interaction inite- of real voryces W_lth conthuous vorticity distributions are
sized vortices(see, e.g., Meleshko and van Hdjjsind even presented in Sgctlon [V. Finally, some general conclusions
the behavior of dipolar and tripolar vortices in the presenceare formulated in Section V.

of nonuniform background vorticitysee, e.g., Velasco Fu-

enteset al®9). Yet, it is a priori not clear whether real vor-

tices (with finite-sized, continuous vorticity distributions 1l. POINT VORTEX MOTION (ON AN INFINITE PLANE)
show a collapse into a single vortex, as predicted by the

point vortex model. The two-dimensional inviscid flow problem of inter-
The present paper reports a numerical study of the ef@cting point vortices(strength y;, position (,y;), with
fects of a finite vortex size on the collapse interaction. In thé =1. - . . N) in the unboundea,y plane consists of solving

initially circular vorticity patches(Rankine vortices with

corresponding circulation values. The evolution of these a1 z“l’ vi(yi—yi)
patches has been simulated using contour dynamics, with the Iodt 27 = rizj )
dy, 1 & (X —X;)
dAlso at Department of Mathematics and Computing Science, Eindhoven U_:l - 21, 7'()(1 Xi
University of Technology. Fodt 2@ & r2 ’
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tory, Department of Civil Engineering, University of Dundee, Dundee Whererﬁ-=(xi—xj)2+(yi—yj)2. The prime indicates omis-

DD1 4HN, UK. . f th . | h— i f h . d th
9Also at the Institute of Hydrodynamics of the National Academy of Sci- S'on of t e_ Smglj' ar term= | rom t e_ sur_nmaﬂon, ano the

ences, 252057 Kiev, Ukraine. initial configuration of the vortices is given by; =x§ ),
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y;=y{? att=0. Itis well-known(see, e.g., Batcheltf that

system(l) can be written in a Hamiltonian form with the ~ © T T
Hamiltonian 5 | .
1 N
H=-— 87T|E ')’l'leOg I’”, 2 4 - . 7
which is a conserved quantity. In addition kb system(1) 3 ]

has three independent first integrals:

z

N N
Q:; YiXi, Pzgl YiYi s Z yi(xZ+yd). (39 1k

A combination of the invarianté3) provides the invariant of 0

motion
N -1k i
L= yyra=2l1-2(P?+Q?), (4)
=1 2| —
with -3 1 1 t i 1 I 1
N
6 5 4 3 2 -1 0 1 2 3
=i§1yi. (5)

FIG. 1. The trajectories of the point vortices in an infinite domgalid
lines) and in a bounded domain of size 222 with free slip walls(short-
dashed lingswith initial positions(indicated by the numbers 1, 2 and 3)
and strengths according (8). The initial locations of the point vortices are

the total circulation of the system. It was shown by Novikov
and Sedo¥, Aref* and Kimura that if the two conditions

N connected with long-dashed lines to show the triangle formed by the three
E vortices. Symbols are placed at the positions of the vortices at time
L=0, V= ¥i7;=0, (6) t=0, 5, 10, 15, 20 and 26andt=25.395 in the infinite domain case

I]_

are satisfied, a situation can exist where all distances between
the vortices have the same time dependency,

147 a?
(D =r;(0)(1+ A @ =G (10
with the constantA depending on the initial conditions. If
A<O0, the vortices collide at tim&=—1/A. S(t)= S log(1—t/T), O<t<T. (11)
We restrict our attention to the (b case, withN=3 2\/§
and The trajectories of the point vortices are drawn in Figure
9u @ 1 with solid lines, for the case where=«x=1 and thus
x(0)=—4a, x(0)=——, x3(0)=7, T=14x/\3=25.3952. In this figure, the three vortices at
t=0 are connected with dashed lines to emphasize the shape
y,(0)=0, y,(0)= 3ay3 y4(0)= ig ®) of the triangle formed by them. Initially, this triangle has a
2 2 right angle at vortex 1, and froifY) and(9) one can observe

y1=— 3k, V2= 2k, y3=— 6k, that this angle remains 90 degrees during the motion. In par-

ticular, the shape of the triangle does not change during the
where o and « are positive parameters. It is easy to checkmot":Jn as a consequence @.

that the necessary conditiofB) are satisfied. The analytical In the next two sections computations with two different

solution of the equations of motidil) satisfying these initial  methods, viz. the contour dynamics method and the finite-

conditions is given by difference method, are discussed. The point vortices are re-
x1(t)=4a(1—t/T)¥2 cog 7+ (1)), placed by vortices with a finite size with initial strength and

position according td8) with a=«x=1.
y1()=4a(1—t/T)¥2 sin(7+ (1)),

¥o(t) = 3ay3(1—t/T)2 cog Emr+ 9(1)), . Ill. COMPUTATIONS WITH CONTOUR DYNAMICS

Contour dynamicgsee Dritschet!!? Zabuskyet al®)
is based on the observation that the evolution of a patch of
uniform vorticity in a two-dimensiona(2-D) flow of an in-
compressible, inviscid fluid is fully determined by the evo-

y2()=3a\3(1-t/T)*2 sin(2 7+ §(1)),

Xg(t)=a(1—t/T)Y? cog  m+ 9(1)),

)= a(1—t/T)Y2 sin( L 7+ 9(1)), Iutiqn of its boundary. The 2-D i_nviscid Euler equ_a_tion writ-
Ya(t)=al ) Em+d() ten in terms of the stream functiogy) and the vorticity ()
whereT and 9 are given by takes the following form:
3316 Phys. Fluids, Vol. 9, No. 11, November 1997 Vosbeek et al.
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Jw 6

E_‘_J(w,w):o, Vzl//:_w’ (12) I I I | I I I
wherelJ is the Jacobian operator 51 B

Y dw Y dw L ]
J(w,lﬁ):&_____a 4
y dX X dy

andV? is the Laplace operator. The first equation expresses 3 |- m
conservation of vorticity of a fluid particle. The solution of 2

the second, the Poisson equation, in an infinite domain is 2 -
formally given by

1 |- —
s0=- | [ wixrsooxaxdy, 13
]R2 O 1
whereG(x;x")= (1/2m) In|x—x’|, i.e., Green’s function of
the Laplace operator for an infinite domain, ate (x,y). -1 F N
For an initially piecewise uniform distribution ab(x),
it can be derived that the velocity fieldx), which is related -2 k — 0.50 7
to ¢ by -3 L . | I ! L 1 I
Y Y
= — 6 -5 4 -3 -2 -1 0 1 2 3
u oy’ v o (14

anywhere in the flow, and in particular on the contoGrs FIG. 2. The trajectories of the centers of three initially circular patches of

. . . . uniform vorticity, with radiusR=0.50 and initial locations and strengths
Wher'Ew(X) is discontinuous, Can_be determme_d by thelzcom'according to(8) (solid lineg. The trajectories were determined by comput-
putation of a number of contour integralsee Dritschéf*2 ing for each patch at each time step the center of vorticity using a contour

Zabuskyet al.13): integral representation. Also drawn are the trajectories of the corresponding
point vortices(dashed lines Symbols are again placed at the positions of

M
the vortices at timé=0, 5, 10, 15, 20 and 25.
u(x)=— 2 ®m G(x;x")dx'. (15
m=1 Cm

Here, w, is the jump of vorticity when crossing the contour
C,, outward. until t=20. After t=20, however, the trajectories deviate
The contour integrals have to be computed numericallyfrom those of the point vortices, and the angle at vortex 1
and the contours therefore have to be approximated by starts to increase. Close inspection of the evolving vorticity
finite, but adjustable, number of points. This technique is nopatches has revealed the deviation from the point-vortex tra-
discussed here; for details see Drits¢hé] Vosbeek and jectories to become noticeable approximately when the mu-
Mattheijl* Integrating the velocities over a time steyt tual distances between the patches becomes comparable to
yields the positions of the boundaries after time sképpnd  the patch sizes. Subsequently, the shape of some of the
thus the evolution of the regions of uniform vorticity can be patches changes considerably. This is shown clearly by Fig.
calculated. The time integration is performed using a second3, where the boundaries of the vortices are drawn with solid
order, symplectic, mid-point rule(see Sanz-Serna and black lines for six moments of time frorn=20 on. Before
Calva'®). The reason for choosing this scheme is that it cont=20 (not shown vortex 1 and vortex 2 become slightly
serves the area of the regions of uniform vorticity better tharelliptic (their aspect ratios remain much smaller than three
ordinary integration methodsee Vosbeek and Matth&. but this almost has no influence on their interaction behavior.
After t=20, however, vortex Iwhich is not the weakest
deforms very rapidly and is even completely torn apart at
In order to study the effect of a finite vortex size on thet=25. This deformation takes place very quickly, and can be
three-vortex interaction in an infinite domain, contour dy-explained by looking at the evolution of the strain rate of the
namics simulations were carried out with initially equal- velocity field.
sized circular patchedrankine vorticesof radiusR, at ini- According to Weis¥ and McWilliams’ the strain rate
tial locations defined by8), with = k=1 and vorticity w; Q is given by
chosen in such a way that;mwR%?=y;. In the first run, the
initial vortex size is takerR=0.50. The trajectories of the o1 o
centers of the three vorticity patches are drawn in Fig. 2 with Q=tr((Vu)) + z %, (16)
solid lines; they were determined by computing for each

patch at each time step the center of vorticity by using avhereVu is the stress tensor and tr is the trace. With the
contour integral represention. Also drawn in this figure, butincompressibility conditionV-u=0, it easily follows that
with dashed lines, are the trajectories of the corresponding((Vu)?)=—2de(Vu) so that

point vortices initially located at the same positions. It is

clear from this figure that the trajectories of the vortices are L

in good agreement with the trajectories of the point vortices Q=—2detVu)+ z 0" (17)

Results
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1t =200 {t=210 ] 0.05
) i P 3 9 i 0 T P 3 2% T 5 7 2% ; 5 . 8
2 9 16 (a) (b)
] . :(z) FIG. 4. The value ofQ plotted for two Kirchhoff vortices with different
) 1 aspect ratio, both with vorticitw= 1. In (a) the aspect ratio of the vortex is
0 0 ) j equal to 2, in(b) it is equal to 4.
1 1 1 D
@, :
-1 4 { 14 0 EIRE]
. 1 ,(@a=b® x* ¥
t =220 t =230 Ew T o5
2 0 1 B 3 9 0 1 2 3 Q= (a+b) a b
) ) ‘ y (2abw)? e % x2 y?
o 1 > , —+=>1
12 (a?—b?)? (coshi2§)—coq27))" a2 p?
14 {1 14 1810 (19)

04 1 o] e where a and b are the semi-major and semi-minor axis
4 lengths of the ellipse, ang and » are elliptic coordinates

19 11 ] ; which are related to the Cartesian coordinatemndy by
1

24.0 2 25.(;0 x=(a?—b?)Y2 cosh ¢)cog 1),

t= =
2 0 1 2 3002 ] 0 1 b 3 y= (ag_ b2)1/2 sinh( £)sin( 7).

FIG. 3. Positions and shapésolid lineg of the monopoles of Fig. 2 at six . . L
moments in time fromt=20 on. The grey shading represents the spatial From the éxpression faR outside the vortex it is clear that

distribution of the strain rate; dark regions have strong strain rate. the strain is largest fop=0 and »= 7 just outside the el-
liptical patch, i.e., at the long ends of the ellipse, and small-
est for p=m/2 and = 3/2. Note that inside the Kirchhoff
) ) - ) vortex the strain is uniform and non-zeginlike the Rankine
Figure 3 also shows, in addltlon_ to the boundaries of thevortex), its magnitude depending on the aspect ratio of the
vortex patches, contourplots of this quan@ythe dark gray  yortex. In particular, for aspect ratios smaller than 3, the
regions are regions with strong strain, the white regions havgyain rate inside the vortex is smaller than the minimum
(@lmos} no strain. o “value of it just outside the vortex, while for aspect ratios
. The f_|rst feature that attracts attention is the strong straifarger than 3 the strain rate inside the vortex is larger than
just outside vortex 3, the strongest vortex. #¢20, this  the minimum value just outside it. To make this more clear,
vortex is still almost circular, and the strain can thus be dehe value ofQ is plotted in a contour plot in Fig. 4, both for
scribe;d with the analytical expression f@r for a (circular a vortex with aspect ratio gFig. 4@)) and for a vortex with
Rankine vortex aspect ratio 4Fig. 4(b)). As in Fig. 3, dark gray regions are
regions with large values dD. Since a Kirchhoff vortex is

1Q

(20

0, r<R .
not stable for aspect ratios larger than (8ee Lové®
Q=141 2R4 (18 Dritschef?), this suggests that the internal strain can play a
2@ a4 r>R role in the deformation of the vortex. This leads to the third

r
and probably most important feature that can be observed

whereR is the radiusw the vorticity andr the radial dis- from Fig. 3: the presence of strain inside vortex 1tat0,
tance to the center of the Rankine vortex. Just outside thehich increases rapidly when time evolves. The increasing
vortex, the strain is strongest and equalite?, and it de-  strain results in a strong deformation of vortex 1 while it is
creases with tf. gradually wrapped around vortex 3. Note that during this

The second feature that attracts attention, is the presengeocess also vortex 2 experiences substantial strain while it is
of a rather strong strain at the long ends of the more or leseecoming more elliptical. At=25 this internal strain has
elliptical vortices 1 and 2 at=20 and later. This feature can disappeared almost completely and the patch is less elon-
be described by the analytical expression@ofor an (ellip-  gated.

tic) Kirchhoff vortex, which can be derived from the expres- From the analytical expressiofl9) for the Kirchhoff
sion of the stream function given by LambAfter some  vortex, it follows that the internal strain is partially due to the
calculation, it follows thaQ is given by elongated vortex shape but the strain induced by the neigh-
3318 Phys. Fluids, Vol. 9, No. 11, November 1997 Vosbeek et al.
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FIG. 6. A part of the trajectories of the monopoles with uniform vorticity

1 with initial radiusR=0.25(a) andR=0.75(b) (solid lineg compared with

the trajectories of the corresponding point vorti¢g@ashed lines The num-

bers 1, 2 and 3 indicate the trajectories of the corresponding vortices. Sym-
bols are placed at the positions of the vortices at timé, 5, 10, 15, 20 and

25. Note the difference in domain size of the two pictures.

t=92 1 =23 It is obvious from Fig. 3 that a “collapse” of the patches
2 1 0 1 2z 3 =2 41 o T2 3 into one single vortex patch does not take place: dfte?25
, , the two surviving vortices move along a curved path as an
asymmetric dipolar structure, carrying the dynamically insig-
il I nificant filament of the original vortex 1 with it.

The evolution of the vortices has also been computed for
10 initial patch radiiR=0.25 and 0.75. Figure 6 shows the last
; ;« part of the trajectories foR=0.25(a) andR=0.75(b). For
-1 7 1 ! the first case the trajectories agree very well with the trajec-
tories of the point vortices until= 24, while for the latter the
1 s trajectories are seen to deviate alreadyt=atl5. This con-
2 1 0 1 2 3 =2 a1 90 1 2 3 firms the observation that the vortices no longer behave as
_ _ _ point vortices once their mutual distance becomes of the or-
FIG. 5. Six stages in the flow evolution of the three monopoles modelled byye f their size (R). The different initial radii apparently
the elliptical vortex patch model. The initial configuration is exactly the . : . .
same as in Fig. 3. The edges of the elliptical vortices are indicated with soli@Nly influence the time scale: the deformations of the vorti-
lines. The cross in the center of the vortices displays both the magnitude anges are in all cases very similar, but start at different mo-
the orientz_sltion of the external strai_n with extension along the solid axis angments in time.
compression along the dashed axis. In the next section we discuss the vortex interaction for
the case of finite-size vortices with smooth, continuous vor-
bouring vorticesexternal straip which become quite close lficity distributions. As an approximation to such more real-
to vortex 1 fromt=20 on, will of course also contribute IStiC vortices, the continuous vorticity distribution was mod-
significantly. An approximation of this external strain can be€lled with the contour dynamics method by a nested set of
obtained by using the elliptical vortex patch model describednitially circular constant-vorticity patches, with the maxi-
by Dritschel and de la Torre Jrez?! In this model vortices Mum vorticity at the center. In the additional simulations the
are represented by elliptical patches of uniform vorticity andgnumber of vorticity levels was varied in the range from 2 to
they are forced to remain elliptical during the evolution. In8; the vorticity levels and the patch sizes were chosen in such
Fig. 5 this model has been used for the same collapse coi Way that the total circulation corresponds to that of the
figuration as in Fig. 3i.e., the same initially circular patches Corresponding point vortetsee(8)). Although the shape de-
of uniform vorticity at the same positionsThe solid lines ~ formations of the nested patches are slightly different from
represent the edges of ttelliptical) vortices; the cross in the those of the single-level patches of the same radii in Fig. 3,
center of the vortices displays both the magnitude and th&€ centroid trajectories were found to be very similar.
orientation of the external strain with extension along the
solid axis and compression along the short-dashed axis. TH¥. COMPUTATIONS WITH A FINITE-DIFFERENCE
strong externally induced strain in vortex 1 fram20 upto ~ METHOD
t=23 causes the elongation of the vortex. Note that compari-  Thg jnteraction behavior of finite-sized vortices with a

son of the contour dynamics simulations of Fig. 3 with this gmqth vorticity distribution has been simulated numerically

elliptical model shows hardly any difference unti=21.  y sing a finite-difference method to solve the 2-D viscous
From this moment on, however, the trajectories only slightly, o ricity equation

deviate from those of the contour dynamics simulations

i i i iffer- Jw
while the deformations of the vortices show larger differ o o) =1V, V= —o, 21)
ences. at
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with » the kinematic viscosity. Systerf21) describes the number of mirror images of these point vortices in the walls
evolution of an initial vorticity distributionw(x,t=0) sub- when solving(1) (e.g., Villat?® Miller?® and SaffmafY).

ject to nonlinear and viscous effects. After makif&i) di- The domain chosen for the computations presented below is
mensionless with a typical length scélg and a typical time 22X 22 and centered around-(1,1), which is roughly the
scaleT, the familiar Reynolds numbdR e appears: center of the trajectories the vortices follow. Figure 1 shows

2T the trajectories of point vortices in this finite domdshort-
Re= —° 0_ E (22) dashed linesfor t=0 until t=25; the trajectories of point
v v’ vortices in an infinite domain, given b§9), are shown in

wherel is a typical circulation of the vorticity distribution. Figure 1 byf sfolid Iilr_1es. It”is (‘Ilear f(;om thiﬁ graph that _the
In the following all typical scales are set equal to 1, so thaf'eS€Nce Of Iree-siip walls SIows down the point vortices

the Reynolds number in effect Re= 1/, and all quantities with respect to point vortices in an infinite domain and their
are given in dimensionless units ' trajectories deviate already from the very beginning of the

The finite-difference method used here is based on &VO|UIIOI’]. As the vortices come closer together, the veloci-

code by Orlandi and VerzicctOrland?? Verziccoet al?d) ties increase and they “oversho_ot”: a .coIIapse does not oc-
and applies a discretization 1) on a rectangular grid in a cur. Note that the strong negative point vgrt(e»umber 3
finite rectangular domain. The time evolution is computedperforms a sr.nall'loop shortly befote=25; this can be seen
with an explicit third-order Runge—Kutta scheme, the vis-M°"€ clearly in Fig. 9. o . .

cous term is discretized with a Crank—Nicolson scheme and . The Ia_lrger_the dom?"” 1S, th? bett_er Fhe trgjectorles_of the
the nonlinear term by the Arakawa scheme. The Poissoﬂomt vortices in the finite domain coincide with those in an

equation in(21) is solved with a Fourier and cyclic reduction infinite domain, and_the closer the _angle at vortex 1 remains
routine. to 90 degrees. For instance, the distance between the corre-

The distributed monopolar vortices were initialized with qundmg point \_/or.tlces dt=25 in a 7777 domain and in .
monopoles of the so-called Bessel type: an infinite domain is about 0.03, and the angle at vortex 1 in
' the 77<77 domain is at that moment 90.94 degrees. Due to

(kR)T computer limitations, such large domains are unfortunately
—————Jo(kr), r=<R not possible for the finite-difference calculations
= 2 .
@ 2R (kR) 23 In the following the results of the finite-difference simu-
0, r=R lations are compared with the trajectories of the point vorti-

ces in the finite domain of 2222, centered around—<1,1),

i.e., the short-dashed lines in Fig. 1. The grid used has
512x 512 cells and the time stefpt is sufficiently small to
ensure a stable computation.

with r the radial distance to the center of the vorteXits
radius, and” its strength or circulation], andJ; are Bessel
functions of the first kind anttR~2.4048 is the first non-
zero root ofJg. The maximum of the vorticity is located at
the center of the monopole, whelg equals unity(The vor-
tex given by(23) is an exact, stationary solution of the in-
viscid vorticity equation(12) in an infinite domain, which
satisfies the linear relationship=k?y). Viscous effects
spread the vorticity over a larger area, so that the radius
increases and the vorticity amplitude decreases as time
evolves. The question addressed here is how this affects th
motion of three monopoles in the initial configuration given
by (8), and whether or not a collapse takes place betweer
them.

At the boundaries of the domain a so-called free-slip 2
condition is used: the velocity perpendicular to the wall
equals zero, whereas there is no restriction on the velocity 1
parallel to the wall. In the case of a no-slip conditifre.,
the velocity equals zero everywhere at the walscously 0
generated vorticity at the walls will in general drastically
affect the vortices. Using free-slip walls of course also af- -1
fects the motion of the monopoles but to a lesser extent thar
no-slip walls (see van Gefferet al,?* where the effect of -2 |- -
walls on the evolution of a single monopole is studied Re = 1000

The necessity of boundaries in the finite-difference cal- -3 . ' . ' . . .
culations implies that the results cannot be quantitatively ¢ -5 -4 -3 -2 -1 0 1 2 3
compared with results of the point vortex and contour dy-
namics method of the previous sections; such a compariso'ﬁG_- 7. Trajectories t_)f thg_center§_ of three Bessel mopopoles init?ally of
can only be qualitative. It is, however, possible to computd2d1uSR=0:25 and with initial positions and strengths given @y (solid

. . . . - lines) and of the corresponding point vorticédashed linesin the same
the effect of free-slip walls on the motion of point vortices in poynded domain which measuresx22 and is centered arour@-1,1).
a bounded domain by including the effects (tiie infinite  Symbols are placed at the positions of the vorticets=a, 5, 10, 15, 20 and

25.

3320 Phys. Fluids, Vol. 9, No. 11, November 1997 Vosbeek et al.
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(a) (b)

FIG. 9. Part of the trajectories of Bessel monopoles with initial radius
. R=0.25 forRe=5000(a) andRe= 10 (b) (solid lines compared with the
% trajectories of the corresponding point vorti¢esshed lines In both cases
Q vortex 1 enters the shown part of the domain at the top at abe@o,
Q vortex 2 enters at the right at abdut 22, and for vortex 3 the full trajectory
is shown. Symbols are placed at the positions of the vortices at

. ' t=0,5, 10, 15, 20 and 25.

t=100 =150 bounded domain. At=20 the distances between the mono-
poles has become of the order of their sizes and from hereon
the monopoles are observed to defofaf. Fig. 3. After
t=20 this deformation becomes more pronounced, espe-
cially for the initially weakest negative monopdfe light-
est shade of gray in Fig)8As a result, the drift velocities of
O the monopoles are smaller than those of the point vortices at

the same moment, and the monopoles’ paths deviate more
&L and more from the trajectories of the corresponding point
) vortices. Clearly, a collapse between the monopoles into one
+=20.0 L=25.0 single vortex does not take place.

After t=25 the two negative monopoles are observed to

FIG. 8. Position and shape of the monopoles of Fig. 7 at six stages in thenerge. The resulting two monopoles form an asymmetric
flow evolution forRe=1000. The shapes of the monopoles are defined bydipolar vortex structuréwith a strong negative and weaker

the vorticity levels+1 and —1; for clarity other vorticity levels are not . .
shown. The darkest vortex is the strong negative monopole, the lightest iQosmve par), which moves along a curved path. The mono-

the weak negative monopole. The part of the domain shown here is the sanRoles gradually increase in size and their vorticity extrema
as that in Fig. 7. decrease, both due to viscous effects, and hence they move
with decreasing drift speed.

Both the viscosity and the initial size of the monopoles
are important for the time scale of their evolution. The larger

Consider first three Bessel monopoles of initial radiusthe viscosity is, the larger are the monopoles at a given time,
R=0.25 with initial strengths and positions given (8) with and the earlier in the evolution the deformations are notice-
a=k=1. Figure 7 shows the trajectories of the extrema ofable. The evolution of Bessel monopoles with initial radius
vorticity of these monopoles fdRe=1000, compared with R=0.25 has also been calculated Re=5000 andRe=1(°
those of point vortices in the same bounded domain, and Figand the last part of their trajectories are shown in Fig. 9. For
8 shows the corresponding positions and shapes of the monBe=10° the monopoles are almost circular and their trajec-
poles at six stages in the evolution. The trajectories werd¢ories coincide with those of the point vortices until close to
obtained by putting at=0 passive tracers at the centers oft=25. The reason for this is of course that the size of the
the vortices(where the vorticity extrema are locajednd  monopoles remains relatively small, as time evolves, so that
following them in time during the calculation. Apparently, the moment when the distance between them is of the order
the passive tracers stay at the vorticity extrema during thef their size is much later in the evolution than with
motion: if this were not the case their paths would showRe=1000. Even forRe=5000 the distributed monopoles
several small loops. What is actually shown in Fig. 8 are thébehave similarly to the point vortices for a long time, con-
vorticity levels of +1 and— 1. These values are used here tosiderably better than witRe= 1000 (cf. Fig. 7).
define the “edges” of the monopoles, since due to viscous A computation with the finite-difference method without
effects the monopoles after=0 do not possess a clear sharp viscous effects, hence of E(L2), reveals trajectories of the
edge anymore. Viscosity causes a size increase of the monoonopoles that are indistinguishable from those with
poles as time evolves. Until about 20 the three monopoles Re=10°. That even an inviscid computation does not lead
are still roughly circular and their trajectories are in goodexactly to the trajectories of the point vortices is caused by
agreement with those of the corresponding point vortices in #éhe finite size of the monopoles: at a certain moment the
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