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Collapse interactions of finite-sized two-dimensional vortices
P. W. C. Vosbeek,a) J. H. G. M. van Geffen,b) V. V. Meleshko,c) and G. J. F. van Heijst
Fluid Dynamics Laboratory, Department of Applied Physics, Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

~Received 12 November 1996; accepted 8 July 1997!

The point vortex model predicts that a certain configuration of three point vortices leads to a
collapse of these vortices to one point. Numerical simulations have been performed to investigate
the effect of a finite vortex size on this two-dimensional collapse interaction. The paper presents
results obtained with contour dynamics simulations of patches of uniform vorticity, and results
obtained with finite difference simulations of vortices with continuous properties. In addition, the
effect of viscosity and the presence of impermeable domain boundaries are investigated. The results
show that the motion of finite-sized vortices is quite similar to the motion of point vortices as long
as the mutual distance between the vortices is larger than their size. When the vortices are closer
together their shapes start to deform and the subsequent evolution is different from that of the point
vortices, and an actual collapse to one vortex does not take place. ©1997 American Institute of
Physics.@S1070-6631~97!00311-5#
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I. INTRODUCTION

In his remarkable dissertation, Gro¨bli1 established the
existence of a special self-similar motion of three point v
tices of chosen intensity located initially at specific positio
on an infinite plane~see also Arefet al.2 for historical and
scientific background!. In this special case the vortex traje
tories have the form of logarithmic spirals with a comm
origin. Depending on the signs of the intensities of the v
tices, they can either escape to infinity~as is the case fo
which Gröbli constructed a solution! or move inward and
collapse in the origin in a finite time. Later studies~Novikov
and Sedov,3 Aref,4 Kimura5,6! have revealed more gener
conditions for point vortex collapse to occur, namely, so
specific relations between the intensities and the initial p
tions of the vortices. Although the collapse is in itself
interesting phenomenon, one may question the physical
nificance of this particular type of highly idealized point vo
tex interaction. The point vortex model has been proven
be very powerful in describing the interaction of~finite-
sized! vortices~see, e.g., Meleshko and van Heijst7! and even
the behavior of dipolar and tripolar vortices in the presen
of nonuniform background vorticity~see, e.g., Velasco Fu
enteset al.8,9!. Yet, it is a priori not clear whether real vor
tices ~with finite-sized, continuous vorticity distributions!
show a collapse into a single vortex, as predicted by
point vortex model.

The present paper reports a numerical study of the
fects of a finite vortex size on the collapse interaction. In
first set of simulations, the point vortices are replaced
initially circular vorticity patches~Rankine vortices! with
corresponding circulation values. The evolution of the
patches has been simulated using contour dynamics, with
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initial patch size~relative to the initial distances between th
patch centers! as the main parameter of interest. In the se
ond set of numerical simulations, the point vortices are
placed by vortices with a smooth vorticity distribution. Th
evolution of these vortices has been calculated by solving
two-dimensional vorticity equation~including the viscous
terms! using a finite-difference method.

The main questions that will be addressed are: how
the trajectories and the shapes of the vortices affected by
finite size of the vortices? What is the influence of viscos
on the process of vortex interaction? Finally, what is t
effect of solid domain boundaries on the vortex collapse
the case of point vortices?

The remainder of the paper is organized as follows.
brief description of the classical point-vortex collapse
given in Section II. The contour dynamics simulations of t
interaction of initially circular patches are discussed in S
tion III, while the results of the finite-difference simulation
of real vortices with continuous vorticity distributions a
presented in Section IV. Finally, some general conclusi
are formulated in Section V.

II. POINT VORTEX MOTION (ON AN INFINITE PLANE)

The two-dimensional inviscid flow problem ofN inter-
acting point vortices~strength g i , position (xi ,yi), with
i 51, . . . ,N) in the unboundedx,y plane consists of solving
the nonlinear system of first-order differential equations

uj5
dxj

dt
52

1

2p ( 8
i 51

N
g i~yj2yi !

r i j
2

,

~1!

v j5
dyj

dt
5

1

2p ( 8
i 51

N
g i~xj2xi !

r i j
2

,

wherer i j
2 5(xi2xj )

21(yi2yj )
2. The prime indicates omis

sion of the singular termi 5 j from the summation, and the
initial configuration of the vortices is given byxj5xj

(0) ,

n

ra-
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yj5yj
(0) at t50. It is well-known~see, e.g., Batchelor10! that

system~1! can be written in a Hamiltonian form with th
Hamiltonian

H52
1

8p (
i , j 51

N

8g ig j log r i j
2 , ~2!

which is a conserved quantity. In addition toH, system~1!
has three independent first integrals:

Q5(
i 51

N

g ixi , P5(
i 51

N

g i yi , I 5(
i 51

N

g i~xi
21yi

2!. ~3!

A combination of the invariants~3! provides the invariant of
motion

L5 (
i , j 51

N

g ig j r i j
2 52GI 22~P21Q2!, ~4!

with

G5(
i 51

N

g i , ~5!

the total circulation of the system. It was shown by Novik
and Sedov3, Aref 4 and Kimura5 that if the two conditions

L50, V5 (
i , j 51

N

8g ig j50, ~6!

are satisfied, a situation can exist where all distances betw
the vortices have the same time dependency,

r i j ~ t !5r i j ~0!~11At!1/2, ~7!

with the constantA depending on the initial conditions. I
A,0, the vortices collide at timeT521/A.

We restrict our attention to the Gro¨bli case, withN53
and

x1~0!524a, x2~0!52
9a

2
, x3~0!5

a

2
,

y1~0!50 , y2~0!5
3aA3

2
, y3~0!5

aA3

2
,

g1523k, g252k, g3526k,

~8!

wherea and k are positive parameters. It is easy to che
that the necessary conditions~6! are satisfied. The analytica
solution of the equations of motion~1! satisfying these initial
conditions is given by

x1~ t !54a~12t/T!1/2 cos~p1q~ t !!,

y1~ t !54a~12t/T!1/2 sin~p1q~ t !!,

x2~ t !53aA3~12t/T!1/2 cos~ 5
6 p1q~ t !!,

~9!

y2~ t !53aA3~12t/T!1/2 sin~ 5
6 p1q~ t !!,

x3~ t !5a~12t/T!1/2 cos~ 1
3 p1q~ t !!,

y3~ t !5a~12t/T!1/2 sin~ 1
3 p1q~ t !!,

whereT andq are given by
3316 Phys. Fluids, Vol. 9, No. 11, November 1997
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k

T5
14pa2

kA3
, ~10!

q~ t !5
5k

2A3
log~12t/T!, 0<t<T. ~11!

The trajectories of the point vortices are drawn in Figu
1 with solid lines, for the case wherea5k51 and thus
T514p/A3525.3952. In this figure, the three vortices
t50 are connected with dashed lines to emphasize the s
of the triangle formed by them. Initially, this triangle has
right angle at vortex 1, and from~7! and~9! one can observe
that this angle remains 90 degrees during the motion. In p
ticular, the shape of the triangle does not change during
motion as a consequence of~7!.

In the next two sections computations with two differe
methods, viz. the contour dynamics method and the fin
difference method, are discussed. The point vortices are
placed by vortices with a finite size with initial strength an
position according to~8! with a5k51.

III. COMPUTATIONS WITH CONTOUR DYNAMICS

Contour dynamics~see Dritschel,11,12 Zabuskyet al.13!
is based on the observation that the evolution of a patch
uniform vorticity in a two-dimensional~2-D! flow of an in-
compressible, inviscid fluid is fully determined by the ev
lution of its boundary. The 2-D inviscid Euler equation wri
ten in terms of the stream function (c) and the vorticity (v)
takes the following form:

FIG. 1. The trajectories of the point vortices in an infinite domain~solid
lines! and in a bounded domain of size 22322 with free slip walls~short-
dashed lines! with initial positions~indicated by the numbers 1, 2 and 3
and strengths according to~8!. The initial locations of the point vortices ar
connected with long-dashed lines to show the triangle formed by the t
vortices. Symbols are placed at the positions of the vortices at t
t50, 5, 10, 15, 20 and 25~and t525.395 in the infinite domain case!.
Vosbeek et al.
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]v

]t
1J~v,c!50 , ¹2c52v, ~12!

whereJ is the Jacobian operator

J~v,c!5
]c

]y

]v

]x
2

]c

]x

]v

]y
,

and¹2 is the Laplace operator. The first equation expres
conservation of vorticity of a fluid particle. The solution o
the second, the Poisson equation, in an infinite domai
formally given by

c~x!52E E
R2

v~x8!G~x;x8!dx8dy8, ~13!

whereG(x;x8)5 (1/2p) lnix2x8i , i.e., Green’s function of
the Laplace operator for an infinite domain, andx5(x,y).

For an initially piecewise uniform distribution ofv(x),
it can be derived that the velocity fieldu(x), which is related
to c by

u5
]c

]y
, v52

]c

]x
, ~14!

anywhere in the flow, and in particular on the contoursCm

wherev(x) is discontinuous, can be determined by the co
putation of a number of contour integrals~see Dritschel11,12,
Zabuskyet al.13!:

u~x!52 (
m51

M

vm R
Cm

G~x;x8!dx8. ~15!

Here,vm is the jump of vorticity when crossing the conto
Cm outward.

The contour integrals have to be computed numeric
and the contours therefore have to be approximated b
finite, but adjustable, number of points. This technique is
discussed here; for details see Dritschel11,12, Vosbeek and
Mattheij.14 Integrating the velocities over a time stepDt
yields the positions of the boundaries after time stepDt and
thus the evolution of the regions of uniform vorticity can
calculated. The time integration is performed using a seco
order, symplectic, mid-point rule~see Sanz-Serna an
Calvo15!. The reason for choosing this scheme is that it c
serves the area of the regions of uniform vorticity better th
ordinary integration methods~see Vosbeek and Mattheij14!.

Results

In order to study the effect of a finite vortex size on t
three-vortex interaction in an infinite domain, contour d
namics simulations were carried out with initially equa
sized circular patches~Rankine vortices! of radiusR, at ini-
tial locations defined by~8!, with a5k51 and vorticityv i

chosen in such a way thatv ipR25g i . In the first run, the
initial vortex size is takenR50.50. The trajectories of the
centers of the three vorticity patches are drawn in Fig. 2 w
solid lines; they were determined by computing for ea
patch at each time step the center of vorticity by using
contour integral represention. Also drawn in this figure, b
with dashed lines, are the trajectories of the correspond
point vortices initially located at the same positions. It
clear from this figure that the trajectories of the vortices
in good agreement with the trajectories of the point vortic
Phys. Fluids, Vol. 9, No. 11, November 1997
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until t520. After t520, however, the trajectories devia
from those of the point vortices, and the angle at vortex
starts to increase. Close inspection of the evolving vortic
patches has revealed the deviation from the point-vortex
jectories to become noticeable approximately when the m
tual distances between the patches becomes comparab
the patch sizes. Subsequently, the shape of some of
patches changes considerably. This is shown clearly by
3, where the boundaries of the vortices are drawn with so
black lines for six moments of time fromt520 on. Before
t520 ~not shown! vortex 1 and vortex 2 become slightl
elliptic ~their aspect ratios remain much smaller than thre!,
but this almost has no influence on their interaction behav
After t520, however, vortex 1~which is not the weakest!
deforms very rapidly and is even completely torn apart
t525. This deformation takes place very quickly, and can
explained by looking at the evolution of the strain rate of t
velocity field.

According to Weiss16 and McWilliams17 the strain rate
Q is given by

Q5tr~„¹u…

2!1 1
2 v2, ~16!

where¹u is the stress tensor and tr is the trace. With t
incompressibility condition¹–u50, it easily follows that
tr(„¹u…

2)522det„¹u… so that

Q522det~¹u!1 1
2 v2. ~17!

FIG. 2. The trajectories of the centers of three initially circular patches
uniform vorticity, with radiusR50.50 and initial locations and strength
according to~8! ~solid lines!. The trajectories were determined by compu
ing for each patch at each time step the center of vorticity using a con
integral representation. Also drawn are the trajectories of the correspon
point vortices~dashed lines!. Symbols are again placed at the positions
the vortices at timet50, 5, 10, 15, 20 and 25.
3317Vosbeek et al.
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Figure 3 also shows, in addition to the boundaries of
vortex patches, contourplots of this quantityQ; the dark gray
regions are regions with strong strain, the white regions h
~almost! no strain.

The first feature that attracts attention is the strong st
just outside vortex 3, the strongest vortex. Att520, this
vortex is still almost circular, and the strain can thus be
scribed with the analytical expression forQ for a ~circular!
Rankine vortex

Q5H 0 , r ,R

1

2
v2

R4

r 4
, r .R

~18!

whereR is the radius,v the vorticity andr the radial dis-
tance to the center of the Rankine vortex. Just outside
vortex, the strain is strongest and equal to1

2v
2, and it de-

creases with 1/r 4.
The second feature that attracts attention, is the pres

of a rather strong strain at the long ends of the more or
elliptical vortices 1 and 2 att520 and later. This feature ca
be described by the analytical expression forQ for an ~ellip-
tic! Kirchhoff vortex, which can be derived from the expre
sion of the stream function given by Lamb.18 After some
calculation, it follows thatQ is given by

FIG. 3. Positions and shapes~solid lines! of the monopoles of Fig. 2 at six
moments in time fromt520 on. The grey shading represents the spa
distribution of the strain rate; dark regions have strong strain rate.
3318 Phys. Fluids, Vol. 9, No. 11, November 1997
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Q55
1

2
v2

~a2b!2

~a1b!2
,

x2

a2
1

y2

b2
,1

~2abv!2

~a22b2!2

e22j

~cosh~2j!2cos~2h!!
,

x2

a2
1

y2

b2
.1

~19!

where a and b are the semi-major and semi-minor ax
lengths of the ellipse, andj and h are elliptic coordinates
which are related to the Cartesian coordinatesx andy by

x5~a22b2!1/2 cosh~j!cos~h!,
~20!

y5~a22b2!1/2 sinh~j!sin~h!.

From the expression forQ outside the vortex it is clear tha
the strain is largest forh50 andh5p just outside the el-
liptical patch, i.e., at the long ends of the ellipse, and sm
est forh5p/2 andh53p/2. Note that inside the Kirchhoff
vortex the strain is uniform and non-zero~unlike the Rankine
vortex!, its magnitude depending on the aspect ratio of
vortex. In particular, for aspect ratios smaller than 3, t
strain rate inside the vortex is smaller than the minimu
value of it just outside the vortex, while for aspect rati
larger than 3 the strain rate inside the vortex is larger th
the minimum value just outside it. To make this more cle
the value ofQ is plotted in a contour plot in Fig. 4, both fo
a vortex with aspect ratio 2~Fig. 4~a!! and for a vortex with
aspect ratio 4~Fig. 4~b!!. As in Fig. 3, dark gray regions ar
regions with large values ofQ. Since a Kirchhoff vortex is
not stable for aspect ratios larger than 3~see Love19,
Dritschel20!, this suggests that the internal strain can pla
role in the deformation of the vortex. This leads to the th
and probably most important feature that can be obser
from Fig. 3: the presence of strain inside vortex 1 att520,
which increases rapidly when time evolves. The increas
strain results in a strong deformation of vortex 1 while it
gradually wrapped around vortex 3. Note that during t
process also vortex 2 experiences substantial strain while
becoming more elliptical. Att525 this internal strain has
disappeared almost completely and the patch is less e
gated.

From the analytical expression~19! for the Kirchhoff
vortex, it follows that the internal strain is partially due to th
elongated vortex shape but the strain induced by the ne

l

FIG. 4. The value ofQ plotted for two Kirchhoff vortices with different
aspect ratio, both with vorticityv51. In ~a! the aspect ratio of the vortex is
equal to 2, in~b! it is equal to 4.
Vosbeek et al.
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bouring vortices~external strain!, which become quite close
to vortex 1 from t520 on, will of course also contribute
significantly. An approximation of this external strain can
obtained by using the elliptical vortex patch model describ
by Dritschel and de la Torre Jua´rez.21 In this model vortices
are represented by elliptical patches of uniform vorticity a
they are forced to remain elliptical during the evolution.
Fig. 5 this model has been used for the same collapse
figuration as in Fig. 3~i.e., the same initially circular patche
of uniform vorticity at the same positions!. The solid lines
represent the edges of the~elliptical! vortices; the cross in the
center of the vortices displays both the magnitude and
orientation of the external strain with extension along
solid axis and compression along the short-dashed axis.
strong externally induced strain in vortex 1 fromt520 up to
t523 causes the elongation of the vortex. Note that comp
son of the contour dynamics simulations of Fig. 3 with th
elliptical model shows hardly any difference untilt521.
From this moment on, however, the trajectories only sligh
deviate from those of the contour dynamics simulatio
while the deformations of the vortices show larger diffe
ences.

FIG. 5. Six stages in the flow evolution of the three monopoles modelled
the elliptical vortex patch model. The initial configuration is exactly t
same as in Fig. 3. The edges of the elliptical vortices are indicated with s
lines. The cross in the center of the vortices displays both the magnitude
the orientation of the external strain with extension along the solid axis
compression along the dashed axis.
Phys. Fluids, Vol. 9, No. 11, November 1997
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It is obvious from Fig. 3 that a ‘‘collapse’’ of the patche
into one single vortex patch does not take place: aftert525
the two surviving vortices move along a curved path as
asymmetric dipolar structure, carrying the dynamically ins
nificant filament of the original vortex 1 with it.

The evolution of the vortices has also been computed
initial patch radiiR50.25 and 0.75. Figure 6 shows the la
part of the trajectories forR50.25 ~a! andR50.75 ~b!. For
the first case the trajectories agree very well with the traj
tories of the point vortices untilt524, while for the latter the
trajectories are seen to deviate already att515. This con-
firms the observation that the vortices no longer behave
point vortices once their mutual distance becomes of the
der of their size (2R). The different initial radii apparently
only influence the time scale: the deformations of the vo
ces are in all cases very similar, but start at different m
ments in time.

In the next section we discuss the vortex interaction
the case of finite-size vortices with smooth, continuous v
ticity distributions. As an approximation to such more re
istic vortices, the continuous vorticity distribution was mo
elled with the contour dynamics method by a nested se
initially circular constant-vorticity patches, with the max
mum vorticity at the center. In the additional simulations t
number of vorticity levels was varied in the range from 2
8; the vorticity levels and the patch sizes were chosen in s
a way that the total circulation corresponds to that of
corresponding point vortex~see~8!!. Although the shape de
formations of the nested patches are slightly different fr
those of the single-level patches of the same radii in Fig
the centroid trajectories were found to be very similar.

IV. COMPUTATIONS WITH A FINITE-DIFFERENCE
METHOD

The interaction behavior of finite-sized vortices with
smooth vorticity distribution has been simulated numerica
by using a finite-difference method to solve the 2-D visco
vorticity equation

]v

]t
1J~v,c!5n¹2v, ¹2c52v, ~21!

y

id
nd
d

FIG. 6. A part of the trajectories of the monopoles with uniform vortici
with initial radiusR50.25 ~a! andR50.75 ~b! ~solid lines! compared with
the trajectories of the corresponding point vortices~dashed lines!. The num-
bers 1, 2 and 3 indicate the trajectories of the corresponding vortices. S
bols are placed at the positions of the vortices at timet50, 5, 10, 15, 20 and
25. Note the difference in domain size of the two pictures.
3319Vosbeek et al.

 or copyright; see http://pof.aip.org/about/rights_and_permissions



.
ha

n

e
is
an
so
n

th

t

-

iu
tim

t
en
ee

lip
al
ci

lly
af
ha

a
el
y

is
ut
in

lls

w is

ws

t

e
es
eir
the
ci-
oc-

the
an
ins
orre-

in
to

ely

-
rti-

has

of

Dow
with n the kinematic viscosity. System~21! describes the
evolution of an initial vorticity distributionv(x,t50) sub-
ject to nonlinear and viscous effects. After making~21! di-
mensionless with a typical length scaleL0 and a typical time
scaleT0, the familiar Reynolds numberRe appears:

Re5
L0

2/T0

n
5

G0

n
, ~22!

whereG0 is a typical circulation of the vorticity distribution
In the following all typical scales are set equal to 1, so t
the Reynolds number in effect isRe51/n, and all quantities
are given in dimensionless units.

The finite-difference method used here is based o
code by Orlandi and Verzicco~Orlandi22, Verziccoet al.23!
and applies a discretization of~21! on a rectangular grid in a
finite rectangular domain. The time evolution is comput
with an explicit third-order Runge–Kutta scheme, the v
cous term is discretized with a Crank–Nicolson scheme
the nonlinear term by the Arakawa scheme. The Pois
equation in~21! is solved with a Fourier and cyclic reductio
routine.

The distributed monopolar vortices were initialized wi
monopoles of the so-called Bessel type:

v5H ~kR!G

2pR2J1~kR!
J0~kr !, r<R

0 , r>R

~23!

with r the radial distance to the center of the vortex,R its
radius, andG its strength or circulation.J0 andJ1 are Bessel
functions of the first kind andkR'2.4048 is the first non-
zero root ofJ0. The maximum of the vorticity is located a
the center of the monopole, whereJ0 equals unity.~The vor-
tex given by~23! is an exact, stationary solution of the in
viscid vorticity equation~12! in an infinite domain, which
satisfies the linear relationshipv5k2c). Viscous effects
spread the vorticity over a larger area, so that the rad
increases and the vorticity amplitude decreases as
evolves. The question addressed here is how this affects
motion of three monopoles in the initial configuration giv
by ~8!, and whether or not a collapse takes place betw
them.

At the boundaries of the domain a so-called free-s
condition is used: the velocity perpendicular to the w
equals zero, whereas there is no restriction on the velo
parallel to the wall. In the case of a no-slip condition~i.e.,
the velocity equals zero everywhere at the wall! viscously
generated vorticity at the walls will in general drastica
affect the vortices. Using free-slip walls of course also
fects the motion of the monopoles but to a lesser extent t
no-slip walls ~see van Geffenet al.,24 where the effect of
walls on the evolution of a single monopole is studied!.

The necessity of boundaries in the finite-difference c
culations implies that the results cannot be quantitativ
compared with results of the point vortex and contour d
namics method of the previous sections; such a compar
can only be qualitative. It is, however, possible to comp
the effect of free-slip walls on the motion of point vortices
a bounded domain by including the effects of~the infinite
3320 Phys. Fluids, Vol. 9, No. 11, November 1997
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number of! mirror images of these point vortices in the wa
when solving ~1! ~e.g., Villat,25 Müller26 and Saffman27!.
The domain chosen for the computations presented belo
22322 and centered around (21,1), which is roughly the
center of the trajectories the vortices follow. Figure 1 sho
the trajectories of point vortices in this finite domain~short-
dashed lines! for t50 until t525; the trajectories of poin
vortices in an infinite domain, given by~9!, are shown in
Figure 1 by solid lines. It is clear from this graph that th
presence of free-slip walls slows down the point vortic
with respect to point vortices in an infinite domain and th
trajectories deviate already from the very beginning of
evolution. As the vortices come closer together, the velo
ties increase and they ‘‘overshoot’’: a collapse does not
cur. Note that the strong negative point vortex~number 3!
performs a small loop shortly beforet525; this can be seen
more clearly in Fig. 9.

The larger the domain is, the better the trajectories of
point vortices in the finite domain coincide with those in
infinite domain, and the closer the angle at vortex 1 rema
to 90 degrees. For instance, the distance between the c
sponding point vortices att525 in a 77377 domain and in
an infinite domain is about 0.03, and the angle at vortex 1
the 77377 domain is at that moment 90.94 degrees. Due
computer limitations, such large domains are unfortunat
not possible for the finite-difference calculations.

In the following the results of the finite-difference simu
lations are compared with the trajectories of the point vo
ces in the finite domain of 22322, centered around (21,1),
i.e., the short-dashed lines in Fig. 1. The grid used
5123512 cells and the time stepDt is sufficiently small to
ensure a stable computation.

FIG. 7. Trajectories of the centers of three Bessel monopoles initially
radiusR50.25 and with initial positions and strengths given by~8! ~solid
lines! and of the corresponding point vortices~dashed lines! in the same
bounded domain which measures 22322 and is centered around~21,1!.
Symbols are placed at the positions of the vortices att50, 5, 10, 15, 20 and
25.
Vosbeek et al.
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Results

Consider first three Bessel monopoles of initial rad
R50.25 with initial strengths and positions given by~8! with
a5k51. Figure 7 shows the trajectories of the extrema
vorticity of these monopoles forRe51000, compared with
those of point vortices in the same bounded domain, and
8 shows the corresponding positions and shapes of the m
poles at six stages in the evolution. The trajectories w
obtained by putting att50 passive tracers at the centers
the vortices~where the vorticity extrema are located! and
following them in time during the calculation. Apparentl
the passive tracers stay at the vorticity extrema during
motion: if this were not the case their paths would sh
several small loops. What is actually shown in Fig. 8 are
vorticity levels of11 and21. These values are used here
define the ‘‘edges’’ of the monopoles, since due to visco
effects the monopoles aftert50 do not possess a clear sha
edge anymore. Viscosity causes a size increase of the m
poles as time evolves. Until aboutt520 the three monopole
are still roughly circular and their trajectories are in go
agreement with those of the corresponding point vortices

FIG. 8. Position and shape of the monopoles of Fig. 7 at six stages in
flow evolution forRe51000. The shapes of the monopoles are defined
the vorticity levels11 and 21; for clarity other vorticity levels are not
shown. The darkest vortex is the strong negative monopole, the lighte
the weak negative monopole. The part of the domain shown here is the
as that in Fig. 7.
Phys. Fluids, Vol. 9, No. 11, November 1997
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bounded domain. Att520 the distances between the mon
poles has become of the order of their sizes and from her
the monopoles are observed to deform~cf. Fig. 3!. After
t520 this deformation becomes more pronounced, es
cially for the initially weakest negative monopole~the light-
est shade of gray in Fig. 8!. As a result, the drift velocities o
the monopoles are smaller than those of the point vortice
the same moment, and the monopoles’ paths deviate m
and more from the trajectories of the corresponding po
vortices. Clearly, a collapse between the monopoles into
single vortex does not take place.

After t525 the two negative monopoles are observed
merge. The resulting two monopoles form an asymme
dipolar vortex structure~with a strong negative and weake
positive part!, which moves along a curved path. The mon
poles gradually increase in size and their vorticity extre
decrease, both due to viscous effects, and hence they m
with decreasing drift speed.

Both the viscosity and the initial size of the monopol
are important for the time scale of their evolution. The larg
the viscosity is, the larger are the monopoles at a given ti
and the earlier in the evolution the deformations are noti
able. The evolution of Bessel monopoles with initial radi
R50.25 has also been calculated forRe55000 andRe5106

and the last part of their trajectories are shown in Fig. 9.
Re5106 the monopoles are almost circular and their traje
tories coincide with those of the point vortices until close
t525. The reason for this is of course that the size of
monopoles remains relatively small, as time evolves, so
the moment when the distance between them is of the o
of their size is much later in the evolution than wi
Re51000. Even forRe55000 the distributed monopole
behave similarly to the point vortices for a long time, co
siderably better than withRe51000 ~cf. Fig. 7!.

A computation with the finite-difference method witho
viscous effects, hence of Eq.~12!, reveals trajectories of the
monopoles that are indistinguishable from those w
Re5106. That even an inviscid computation does not le
exactly to the trajectories of the point vortices is caused
the finite size of the monopoles: at a certain moment

he
y

is
me

FIG. 9. Part of the trajectories of Bessel monopoles with initial rad
R50.25 forRe55000~a! andRe5106 ~b! ~solid lines! compared with the
trajectories of the corresponding point vortices~dashed lines!. In both cases
vortex 1 enters the shown part of the domain at the top at aboutt520,
vortex 2 enters at the right at aboutt522, and for vortex 3 the full trajectory
is shown. Symbols are placed at the positions of the vortices
t50, 5, 10, 15, 20 and 25.
3321Vosbeek et al.
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distance between the monopoles is of the order of their s
and from that moment on the shapes of these monop
deform from their initially circular shape, and hence th
trajectories deviate.

V. CONCLUSIONS

In this paper we have presented numerical simulati
that demonstrate the influence of finite vortex sizes and
cosity effects on vortex interactions in a situation whi
leads to a vortex collapse in the point vortex case. Both in
infinite and in a finite domain, the results show a good agr
ment in the behavior of finite-size vortices with point vor
ces if their mutual distance is ‘‘sufficiently large.’’ Whe
these distances become of the order of the vortex sizes,
trajectories are seen to differ from those of the correspond
point vortices and the vortices start to deform. In the thr
vortex configuration considered here, one vortex in particu
deforms very dramatically, due to the growing internal a
external strain. It is believed that this deformation into a lo
filament, which is gradually wrapped around the remain
vortices, prevents a collapse into one single final vortex.

The bigger the vortices initially are, the earlier they st
to deform. In fact, only the time scale of the deformations
influenced by the size of the vortices; the deformations the
selves are very similar for different initial sizes of the vor
ces. Viscosity causes the vortex sizes to grow as t
evolves, thus resulting in earlier deformations than in
inviscid case.
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