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Abstract: The aim of this paper is to evaluate the surface concentration of nitrogen dioxide (NO2)
inferred from the Sentinel-5 Precursor Tropospheric Monitoring Instrument (S5P/TROPOMI) NO2

tropospheric column densities over Central Europe for two time periods, summer 2019 and winter
2019–2020. Simulations of the NO2 tropospheric vertical column densities and surface concentrations
from the Long-Term Ozone Simulation–European Operational Smog (LOTOS-EUROS) chemical
transport model are also applied in the methodology. More than two hundred in situ air quality
monitoring stations, reporting to the European Environment Agency (EEA) air quality database,
are used to carry out comparisons with the model simulations and the spaceborne inferred surface
concentrations. Stations are separated into seven types (urban traffic, suburban traffic, urban back-
ground, suburban background, rural background, suburban industrial and rural industrial) in order
to examine the strengths and shortcomings of the different air quality markers, namely the NO2 verti-
cal column densities and NO2 surface concentrations. S5P/TROPOMI NO2 surface concentrations
are inferred by multiplying the fraction of the satellite and model NO2 vertical column densities with
the model surface concentrations. The estimated inferred TROPOMI NO2 surface concentrations are
examined further with the altering of three influencing factors: the model vertical leveling scheme,
the versions of the TROPOMI NO2 data and the air mass factors applied to the satellite and model
NO2 vertical column densities. Overall, the inferred TROPOMI NO2 surface concentrations show a
better correlation with the in situ measurements for both time periods and all station types, especially
for the industrial stations (R > 0.6) in winter. The calculated correlation for background stations is
moderate for both periods (R~0.5 in summer and R > 0.5 in winter), whereas for traffic stations it
improves in the winter (from 0.20 to 0.50). After the implementation of the air mass factors from the
local model, the bias is significantly reduced for most of the station types, especially in winter for
the background stations, ranging from +0.49% for the urban background to +10.37% for the rural
background stations. The mean relative bias in winter between the inferred S5P/TROPOMI NO2

surface concentrations and the ground-based measurements for industrial stations is about −15%,
whereas for traffic urban stations it is approximately −25%. In summer, biases are generally higher
for all station types, especially for the traffic stations (~−75%), ranging from −54% to −30% for the
background and industrial stations.

Keywords: remote sensing; air quality; S5P/TROPOMI; LOTOS-EUROS; EEA; NO2 surface concentration

1. Introduction

Nitrogen oxides (NOX = NO + NO2) play a significant role in tropospheric chemistry
and have a negative impact on air quality. Nitrogen dioxide (NO2) is a precursor of
tropospheric ozone and aerosols [1–3] and has been associated with premature deaths
and high mortality rates [4,5]. The short lifetime and the high spatial variability of NO2
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emission sources traditionally limited the spatial representativity of monitoring of NO2
loads in non-background locations with in situ measurements only. The quantification of
the spatial variability of NO2 concentrations from satellite observations bridges this spatial
gap. There are multiple satellite instruments providing spaceborne measurements that
are able to detect emission sources at high spatiotemporal resolution on a global scale and
are used to develop methods for estimating NO2 surface concentrations and improving
forecasting models [6].

Previous studies directly compared satellite NO2 vertical column densities with
ground-based measurements over Helsinki and have shown a mean relative bias of 10% [7],
while a strong spatial correlation (R = 0.8) is reported over the USA [8]. Because of the
limited number of ground-based stations and the fact that NO2 satellite columns are not
truly representing ground-level measurements, new methodologies were developed aiming
to derive NO2 surface concentrations from satellite vertical column densities with the use
of chemical transport models [9–16]. In particular, a high correlation coefficient (up to
0.86) was reported between satellite-derived NO2 surface concentrations and ground-based
measurements, with a tendency for higher correlations over polluted areas, in northern
USA [9]. Satellite-derived NO2 surface concentration trends for the period 1996–2012 have
shown decreasing NO2 loads over North America, western Europe and Asia-Pacific, and
were found to be highly correlated with in situ measurements especially over non-rural
areas (R~0.8) [12]. Moreover, inferred satellite NO2 surface concentrations reported im-
proved correlation coefficients with ground-based measurements over China compared to
the correlation coefficients calculated between forward model simulations and in situ mea-
surements [14]. A new algorithm for the derivation of satellite NO2 surface concentrations
has shown a significant improvement in the correlation coefficients between the Sentinel-5
Precursor Tropospheric Monitoring Instrument (S5P/TROPOMI) inferred concentrations
and ground-based observations [15,16]. More recently, machine learning techniques have
been developed for the derivation of satellite NO2 surface concentrations, which show
promising results [17–19]. Hence, it is evident that the derivation of NO2 surface concentra-
tions from satellite observations has introduced new capabilities in the monitoring of air
quality at the ground, contributing to the implementation of emission-reduction strategies
and the development of health studies.

In this work, NO2 surface concentrations are derived from TROPOMI NO2 tropo-
spheric vertical column densities (VCDs) and Long-Term Ozone Simulation–European
Operational Smog (LOTOS-EUROS) chemical transport model (CTM) simulations follow-
ing the methodology described in [9]. The inferred TROPOMI NO2 surface concentrations
are validated with in situ measurements reported by the European Environment Agency
(EEA) stations over central Europe and for two studied periods, June–July 2019 and Decem-
ber 2019–January 2020. Three different setups are applied for estimating the satellite NO2
surface concentrations and the results are examined based on three influencing quantities,
namely the vertical leveling scheme of the LOTOS-EUROS CTM, the product version of
the TROPOMI NO2 data and the air mass factors (AMFs) used in each setup. This study is
structured as follows. In Section 2, all the involved datasets are described in detail and the
methodology is presented. In Section 3.1, the results are presented, and the impacts of the
tested influencing factors are discussed. Section 3.2 presents the optimal setup used in this
work. Finally, Section 4 summarizes the main findings of this study.

2. Materials and Methods
2.1. Datasets
2.1.1. S5P/TROPOMI NO2 Tropospheric Vertical Column Densities

The Tropospheric Monitoring Instrument (TROPOMI) is a passive, nadir-viewing
spectrometer onboard the European Space Agency (ESA) Sentinel-5 Precursor (S5P) satel-
lite [20], launched during October 2017. TROPOMI provides measurements of various
trace gas columns, aerosol, and cloud properties in four channels (UV, visible, IR and
SWIR) with a very high spatial resolution of 3.5 km2 × 7 km2 (3.5 km2 × 5.5 km2 as of
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August 2019), from an ascending sun-synchronous polar orbit [21–23]. The high spatial
resolution combined with an improved signal-to-noise ratio compared to previous space-
borne instruments allows the detection of local anthropogenic emission sources [8,24–26].
The tropospheric NO2 VCD retrieval is performed in the 405–465 nm range. TROPOMI
data are generated with the DOMINO (Dutch OMI NO2) algorithm, which is also used
for the Ozone Monitoring Instrument (OMI) data production [27,28]. Details concerning
the standard operational NO2 product can be found in the Algorithm Theoretical Basis
Document [22] and the Product User Manual [29].

In this work, we use offline v1.3 and v2.3 S5P/TROPOMI tropospheric vertical column
densities (VCDs) for two sensing periods (June–July 2019 and December 2019–January
2020). According to the latest validation report [30], a mean negative bias of −32% is found
in the tropospheric column densities between TROPOMI v1.3 and MAX-DOAS ground-
based data from 27 stations. The bias depends on the pollution level at the station, being
positive over clean areas (18%) and negative (−46%) over highly polluted areas, but overall
within the mission requirement of 50%. The low TROPOMI tropospheric VCDs over highly
polluted areas have led to the implementation of improvements in the TROPOMI NO2
retrieval algorithm leading to version 2.3. The new TROPOMI v2.3 data, publicly available
via the ESA Sentinel-5P Product Algorithm Laboratory (S5P-PAL) show, on average, higher
tropospheric VCDs up to 10–40% compared to the v1.3 data, depending on the level of
pollution and season, especially in winter over mid and high latitudes [23]. Comparisons
with ground-based data show that v2.3 TROPOMI data reduces the mean bias of the
tropospheric columns from −32% to −23%, the stratospheric from −6% to −3% and the
total column bias from −12% to −5%, respectively [23].

For the purposes of this study, we use observations of scenes that are mostly cloud-
free with an associated quality flag higher than 0.75. The daily orbital files for the sensing
periods are gridded onto a 0.05◦ × 0.1◦ grid covering the European domain. Figure 1 depicts
the TROPOMI v1.3 (Figure 1a) and v2.3 (Figure 1b) tropospheric VCDs for December 2019
and their differences (Figure 1c). The same maps for June 2019 are shown in Figure A1. The
v2.3 columns show higher values (by 16% on average) over highly polluted areas, namely
the Po valley in northern Italy, the cities of Essen, Dusseldorf and Koln in western Germany
and the cities of Rotterdam, Brussels and Paris. The differences are more pronounced in
winter, whereas slightly higher NO2 VCDs in v1.3 TROPOMI data are observed over a
handful of rural and background areas located in central Germany. More specifically, the
TROPOMI v2.3 tropospheric VCDs are about 3% higher in June and July compared to
the v1.3 dataset, whereas in winter, v2.3 data are by 11–18% higher for the whole domain.
Over the hotspots mentioned above, the bias is approximately 13% in summer and ranges
between 16–26% in winter, as reported in [23].
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2.1.2. LOTOS-EUROS CTM Simulations

In this work, the LOTOS-EUROS chemical transport model is used [31]. LOTOS-
EUROS is one of the nine state-of-the-art models used in the Copernicus Atmosphere
Monitoring Service (CAMS) to provide air quality forecasts to a broad range of users. It
simulates distinct components (e.g., oxidants, primary aerosol, heavy metals) in three
dimensions in the lower atmosphere [32]. The model has been used in a wide range of
air quality studies and has been extensively evaluated against in situ measurements. A
model evaluation against ground-based measurements over two major Greek cities has
shown that the modeled NO2 surface concentrations show a high spatial correlation of
0.86 and a moderate underestimation of about 10% [33]. When compared to industrial
stations located near power plants in Greece, LOTOS-EUROS NO2 surface concentrations
mean seasonal bias improves to 2 µg/m3 from 10 µg/m3, after assimilating the spaceborne
TROPOMI NO2 observations [34]. The model has also been recently used to estimate
changes in NO2 emissions due to the COVID-19 pandemic restrictive measures [26] and
to study NO2 concentrations attributed to shipping activity in the Mediterranean and the
Black Sea basin [35]. Both studies show significant agreement with TROPOMI satellite
observations (R~0.95).

For this study, we use the LOTOS-EUROS v2.02.001 open-source version and more
specifically the NO2 tropospheric vertical column densities and NO2 surface concentrations
over the central European domain and selected pixels representative of the ground-based
station locations. A nested domain configuration was used. Two model runs with different
spatial resolutions were performed to maximize the smooth transition of dynamics between
a coarser European domain and a refined central European domain. The first (outer)
run covers the European domain from 15◦ W to 45◦ E and from 30◦ N to 60◦ N with a
horizontal resolution of 0.25◦ × 0.25◦. Boundary and initial conditions of this run are
obtained from the CAMS global near-real-time (NRT) product with a spatial resolution of
35 km × 35 km. The second (inner) run was performed for central Europe, from 2◦ E to 18◦ E
and from 39◦ N to 55◦ N with a horizontal resolution of 0.05◦ × 0.10◦ (latitude x longitude).
Boundary conditions of the inner run are obtained from the lower resolution outer domain.
The model simulations are driven by operational meteorological data from the European
Centre for Medium-Range Weather Forecasts (ECMWF) with a horizontal resolution of
7 km × 7 km [36]. Finally, the CAMS-REG (CAMS regional European emissions) v4.2 for
the year 2017 available at 0.05◦ × 0.10◦ [37] is the anthropogenic emission inventory used
in the model.

2.1.3. CAMS Satellite Operator (CSO)

The CAMS Satellite Operator (CSO, https://ci.tno.nl/gitlab/cams/cso, last accessed
30 June 2022) is a toolbox to facilitate assimilation of satellite observations in regional air
quality models. It contains two main entities: a preprocessor that can be used to download
and convert satellite data, in particular TROPOMI data, and an observation operator that
can be added to the source code of a model simulation. With this operator, the module can
perform simulations of the satellite retrievals and use them in a data assimilation procedure.
The observation operator is included in the LOTOS-EUROS source code, and it is used to
provide simulations, as described below.

More specifically, the TROPOMI tropospheric NO2 retrieval product (yr) is treated by
CSO as a profile with one layer from the surface up to 200 hPa. The simulation of a retrieval
product from a model state does not require an a priori profile and is denoted with:

ys = Atrop ∗ H ∗ x (1)

where:

• ys is the simulated retrieval defined on a single layer profile, nr = 1;
• Atrop is the tropospheric averaging kernel with shape (nr, na); in this product na = 34,

the number of a priori layers covering the full atmosphere;

https://ci.tno.nl/gitlab/cams/cso
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• X is a concentration profile defined on model layers covering the full atmosphere;
values above 200 hPa are actually ignored;

• H extracts a simulated profile from the model using vertical and horizontal interpolation.

The tropospheric averaging kernel is derived from Equation (2):

Atrop[:, l] = M
Mtrop[:]

∗ A[:, l], l ≤ ltp
Atrop[:, l] = 0, 1 ≥ ltp

(2)

using the following entities from the retrieval product:

• A is the total column averaging kernel;
• M is the scalar total column air mass factor;
• Mtrop is the tropospheric column air mass factor;
• ltp is the index of the layer containing the tropopause in the a priori profile.

The air mass factors in the TROPOMI product are based on simulations with the
TM5-MP global atmospheric model [38] at the coarser resolution of 0.5◦ × 0.5◦. Thus, the
air mass factors do not represent the strong gradients near high emitting sources. This
can be improved by replacing the original tropospheric averaging kernels of the retrieval,
depending on the a priori profiles of the TM5-MP model, with the LOTOS-EUROS higher
resolution model profiles. As described in [29], the first step is to estimate an alternative
tropospheric air mass factor using the alternative a priori profile (x̂a), in our case a LOTOS-
EUROS simulation:

M̂trop
(x̂a ) = Mtrop ∗

(
Atrop ∗ H ∗ x̂a )/(∑ltp

l=1(H ∗ x̂a)l (3)

This is used to obtain the updated retrieval and tropospheric averaging kernel as
scaled versions of the original variables, as described in Equations (4) and (5).

ŷr(x̂a) = (Mtrop/M̂trop
(x̂a)) ∗ yr (4)

Âtrop
(x̂a) = (Mtrop/M̂trop

(x̂a)) ∗ Atrop (5)

Thus, the new simulations can be estimated by replacing the variables in Equation (1),
initially with Equation (5) and then with Equation (3).

ŷs(x̂a) = Âtrop
(x̂a) ∗ H ∗ x̂a

= (Mtrop/M̂trop
(x̂a)) ∗ Atrop ∗ H ∗ x̂a

= Mtrop

Mtrop(Atrop ∗ H ∗ x̂a)/(∑
ltp
l=1(H ∗ x̂a) l)

Atrop ∗ H ∗ x̂a

= (∑
ltp
l=1 (H ∗ x̂a)l)

(6)

The effect of the aforementioned process is illustrated in Figure 2. Figure 2a shows
the original TROPOMI v2.3 NO2 VCDs, while Figure 2b depicts the TROPOMI v2.3 NO2
VCDs after the application of the local air mass factor correction described in Equations
(4) and (5). Figure 2c shows the differences between those two datasets for December
2019. The updated TROPOMI v2.3 NO2 VCDs with the local air mass factor correction
show sharper gradients, especially over highly polluted areas in western Germany, the
Netherlands, Belgium, the Po valley, and cities such as Paris, Rome and Naples. Increased
NO2 concentrations can also be observed over rural and background areas in central
Germany and eastern France. Over the whole domain, the updated NO2 VCDs are higher
by approximately 20% when compared to the original NO2 VCDs. Over hotspots, the
updated TROPOMI v2.3 NO2 VCDs show higher levels by approximately 18% for both
periods, while over rural areas concentrations are higher by 16% and 22% for the summer
and winter, respectively.
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Note that assimilation is not applied for the purposes of this study. The NO2 products
from the CSO process are used as input for the estimation of TROPOMI inferred NO2
surface concentrations, as described in detail in the methodology.

2.1.4. European Environmental Agency In Situ Measurements

Hourly in situ measurements of NO2 surface concentrations over central Europe are
obtained from the European Environment Agency (EEA) (https://discomap.eea.europa.eu/
map/fme/AirQualityExport.htm, last accessed on 11 July 2022). The European air quality
database includes information concerning the monitoring of air quality from all member
countries of the European Union (EU) and additionally some countries that cooperate
with the EEA. This dataset is used for the evaluation of the satellite-derived NO2 surface
concentrations and the LOTOS-EUROS simulations. In situ measurements at 11:00 UTC
were chosen as representative of the overpass time of S5P for June, July, December 2019
and January 2020.

For this work, data from 236 stations were used for over 20 locations in central Europe
(Figure 3). The choice of the station location was not arbitrary and specific criteria were
considered. The stations had to be distributed all over the domain, thus comparisons could
be made for various regions and area types (traffic, background, rural, etc.). The stations are
categorized in the EEA database in the following types: urban traffic (81), suburban traffic
(7), urban background (86), suburban background (30), rural background (19), suburban
industrial (6) and rural industrial (7).

2.2. Methodology

The objective of this work is to estimate NO2 surface concentrations inferred from
S5P/TROPOMI NO2 tropospheric VCDs using as input LOTOS-EUROS CTM simulations.
The basis of the methodology is described by Equation (7), originally applied in [9]. Ac-
cording to Equation (7), the derived NO2 satellite concentrations are equal to the fraction of
the NO2 VCDs of the satellite and the chemical transport model multiplied by the surface
concentration of the lowest vertical layer of the model.

So = (ΩO/ΩG) ∗ SG (7)

where:

• So, inferred TROPOMI NO2 surface concentration;
• SG, NO2 surface concentration of the model;
• ΩG, NO2 tropospheric VCDs of the model;

https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm
https://discomap.eea.europa.eu/map/fme/AirQualityExport.htm
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• Ωo, NO2 tropospheric VCDs from the satellite observations.
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Figure 3. Study domain (red box) and location of the ground-based stations (green boxes).

The model vertical profiles are obtained for 11:00 UTC, corresponding to the closest
time of the TROPOMI overpass across the domain. Three surface datasets are estimated
based on three different setups involving the various datasets of the simulations and the
satellite retrievals. More specifically, the first dataset of the inferred TROPOMI NO2 surface
concentrations is derived by using as input the TROPOMI NO2 tropospheric VCDs and the
a priori LOTOS-EUROS NO2 tropospheric VCDs and surface concentrations. The second
dataset includes the CSO simulations where the TM5-MP averaging kernels are applied
to the LOTOS-EUROS vertical profiles. Finally, the third dataset is derived by applying
the satellite and model NO2 VCDs, updated with the new air mass factors and averaging
kernels, and the a priori LOTOS-EUROS NO2 surface concentrations to Equation (7). Table 1
describes the model and satellite datasets used in each setup applied to the methodology
to derive the inferred NO2 satellite surface concentrations products, as discussed above.

Table 1. Datasets and their products involved in each setup in order to estimate TROPOMI inferred
NO2 surface concentrations.

Datasets Setup 1/Baseline Setup 2 Setup 3

LOTOS-EUROS
A priori NO2 surface

concentrations and a priori
NO2 VCDs

NO2 surface concentrations
and NO2 VCDs with TM5-MP

AKs

A priori NO2 surface
concentrations and NO2

VCDs with updated AMFs
and AKs

TROPOMI Original NO2 VCD Original NO2 VCD NO2 VCD with updated
AMFs and AKs

Surface products TROPOMI inferred NO2
surface concentration

TROPOMI inferred NO2
surface concentrations with

TM5-MP AKs

TROPOMI inferred NO2
surface concentrations with

model air mass factors
correction

The modeled and inferred TROPOMI NO2 surface concentrations of the closest pixels
to the station locations are selected to carry out comparisons with the EEA in situ mea-
surements. To ease the understanding of the process, we provide here a first example of
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the results, which are discussed in detail further on. Figure 4 shows the derived satellite
NO2 surface concentrations (in µg/m3) for July 2019 (left column) and for January 2020
(right column) based on the three setups shown in Table 1. Figure 4a,b depict the inferred
TROPOMI v2.3 NO2 surface concentrations of the first setup with the original TROPOMI
v2.3 product and the a priori LOTOS-EUROS simulations. Figure 4c,d show the second
setup of inferred NO2 surface concentrations with the inclusion of the CSO simulations and
the application of the TM5-MP averaging kernels on the LOTOS-EUROS profiles. Finally,
Figure 4e,f illustrate the third setup of the estimated NO2 satellite surface concentrations
with the updated averaging kernels (AKs) and air mass factors. It is evident that as we
move from the case of not applying AKs (Figure 4a,b), to applying the original TROPOMI
TM5-MP AKs (Figure 4c,d) and to applying the updated CSO AKs (Figure 4e,f), the inferred
NO2 surface concentration increases, for both time periods. The road transport and ship-
ping emitting lanes appear clearly in the second and third setups, even more pronounced
in the third setup for the month of July in the Po valley and the Adriatic Sea. For January
2020, the third setup shows overall higher NO2 concentrations, as expected, compared to
the other two setups, and sharper gradients in the vicinity of the highs of the Po valley and
southern Germany.
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Figure 4. Mean TROPOMI v2.3 inferred NO2 surface concentrations (in µg/m3) for July 2019 (left
column) and January 2020 (right column) for each setup, calculated using the (a,b) LOTOS-EUROS
model output; (c,d) LOTOS-EUROS output after application of the TM5-MP averaging kernels;
(e,f) TROPOMI and LOTOS-EUROS products after application of the CSO AMFs.
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3. Results
3.1. Investigation into Influencing Quantities

In this section, the most prominent quantities that affect the methodology are studied
and the results are analyzed. The aim of the derivation of satellite NO2 surface concentra-
tions is mainly to provide information at locations where ground-based stations do not
exist. Therefore, each quantity involved needs to be studied in detail and cross-validated
with in situ measurements. Three instances and their imprint on the results are examined:
the vertical levelling scheme used in the LOTOS-EUROS CTM and the CSO operator simu-
lations (Section 3.1.1), the versions of the S5P/TROPOMI satellite data (Section 3.1.2), and
the new updated air mass factors estimated through the CSO process (Section 3.1.3).

3.1.1. LOTOS-EUROS Vertical Leveling Scheme

Initially, the effect of the LOTOS-EUROS CTM vertical leveling scheme on the results
is examined. There are three methods to define vertical layers in the LOTOS-EUROS
configuration: the mixed-layer definition, the hybrid-layer definition and the meteo-level
definition [39]. The meteo-level definition, used in this study, adopts the level definition of
the meteorological data. Layer interfaces can be defined as pressures or heights above the
surface, depending on the meteorological data. This option can be more realistic when
using the model at high resolution, depending on the application and resolution of the
input meteorology.

In this work, the meteo-level definition is used in order to keep the model as consistent
as possible with the ECMWF meteorological data. Two different meteo-leveling schemes
are applied on the model runs. The first setup of model simulations, which is the base
setup (hereafter mentioned as meteo12 leveling scheme), uses 12 vertical layers and the
second setup (hereafter mentioned as meteo34 leveling scheme) uses the same configuration
as the ECMWF model with 34 vertical layers. The meteo12 model simulations extend to
approximately 9 km whereas the meteo34 simulations extend to 30 km. Both schemes
include eight layers on top of the model, 20 and 42 total layers in total, respectively,
filled by the boundary conditions in order to have full atmosphere to simulate total NO2
columns. The first three layers of both schemes are identical. In meteo12, a coarsening
of the layers takes place after the first three model levels, whereas the second setup is
more detailed, providing information on each vertical layer corresponding to the ECMWF
vertical layers. The meteo12 scheme is very efficient in terms of computation time, while
the meteo34 scheme is computationally more expensive [40]. Figure 5 shows the LOTOS-
EUROS NO2 surface concentration of the first model layer for both leveling schemes for a
zoomed-in area covering the regions of Belgium, western Germany and the Netherlands.
At first glance, no significant differences can be spotted between the meteo12 (Figure 5a)
and the meteo34 leveling schemes (Figure 5b) NO2 surface concentrations. By observing
the absolute differences between the NO2 surface concentrations of the meteo34 and the
meteo12 schemes (Figure 5c), however, it is evident that the meteo34 leveling scheme results
in slightly higher concentrations over high-emitting land areas, by a mean of +1.2 µg/m3,
and sharper gradients over hotspots but generally lower concentrations over the sea. The
same pattern is also observed in the winter months (Figure A2).
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simulations (in µg/m3) for July 2019: (a) meteo12 leveling scheme; (b) meteo34 leveling scheme; (c)
absolute difference between the meteo34 and meteo12 leveling schemes.

A more detailed view of the differences between the two leveling schemes is shown
in the vertical profiles of the modeled NO2 concentrations (Figure 6) for June 2019 and
in Figure A3 for January 2020. Layer interfaces are defined as heights above the surface
according to the ECMWF data. Figures 6a and A3a show the vertical profiles of a hotspot
pixel while Figures 6b and A3b depict the vertical profiles of a rural pixel. Figures 6c and
A3c show the differences between the two vertical schemes. Both hotspot and rural pixels
are selected as the closest to a traffic and a rural station in the Netherlands, within the city
of Amsterdam. Differences between the vertical profiles of the two leveling schemes are
calculated for the first 12 common reference heights, namely the top of each layer from the
meteo12 scheme, for both hotspot and rural pixels (Figures 6c and A3c). In both summer
and winter, the meteo34 scheme shows higher concentrations for the first three layers. On
the contrary, meteo12 shows higher NO2 concentrations between the fifth and the ninth
layer (between 0.12 and 1.5 km), while for higher layers the differences become negligible.
Differences are more pronounced for the hotspot pixel, where the meteo34 leveling scheme
shows higher NO2 concentrations for the first three layers by 0.2 µg/m3 in June 2019 and by
0.9 µg/m3 for January 2020 (Figure A3c). The rural differences are an order of magnitude
smaller than for hotspot pixels. Overall, for the first model layer, which is used to derive
satellite NO2 surface concentrations, the meteo34 leveling scheme shows 2–4% higher
concentrations over the hotspot pixel and 6–10% over the rural pixel for both periods. For
the whole central European domain and the first model layer, the meteo34 leveling scheme
shows approximately 5% higher NO2 concentrations for the summer months and 3% for
the winter months.

The LOTOS-EUROS NO2 surface concentrations of the first layer from both leveling
schemes are applied to the third setup (Table 1). Inferred TROPOMI v2.3 NO2 surface
concentrations are then estimated for each station type and studied period. The output
is two surface products, updated with the new air mass factors and averaging kernels,
derived from the two different leveling schemes. Those newly estimated datasets are
intercompared for all station types and studied periods in order to assess the effect of the
leveling scheme to the implemented methodology.

Figure 7 shows the scatter density plots of rural background (Figure 7a) and rural
industrial (Figure 7c) stations for the two leveling schemes (Figure 7b,d) for the winter.
NO2 TROPOMI inferred surface concentrations show an overall good agreement with
the in situ measurements for both station types with correlation coefficients between 0.53
and 0.7. More specifically, the rural background NO2 surface concentrations derived from
the meteo12 leveling scheme show a correlation of 0.53 and slope of 0.67, whereas the
concentrations derived from the meteo34 leveling scheme show a slightly higher correlation
(0.55) and a slope of 0.75. Rural industrial correlations are 0.70 and 0.67, and the slopes are
0.79 and 0.94, respectively.
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Figure 7. Scatter density plots between the station NO2 surface concentration (x axis) and the inferred
TROPOMI surface concentration (y axis) with the updated AMFs for winter 2019–2020: (a) rural
background stations meteo12 leveling scheme comparison; (b) rural background stations meteo34
leveling scheme comparison; (c) rural industrial meteo12 leveling scheme comparison; (d) rural
industrial meteo34 leveling scheme comparison.
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Tables 2 and A1 summarize the correlation coefficient, slope, and relative bias of the
comparison between the inferred NO2 TROPOMI v2.3 surface concentrations, derived from
each leveling scheme, and the in situ measurements for winter and summer, respectively.
Overall, the use of the meteo34 leveling scheme leads to improvements for almost all
statistical parameters examined. The urban and suburban traffic stations bias is reduced,
from −24.55% to −20.70% and from −26.90% to −23.18%, respectively. Suburban industrial
stations bias is lower in the case of the meteo34 leveling scheme (−9.70%) compared to the
meteo12 (−15.66%) and the rural industrial stations bias is significantly improved from
−15.57% to −4.32%. For background stations, the mean relative bias is slightly higher in
the case of the meteo34 leveling scheme for all station types by ~5–7%. Slopes are closer to
the 1:1 line for the NO2 surface concentrations derived from the meteo34 leveling scheme,
except for the urban background stations. Correlation coefficients are very similar for both
leveling schemes with the highest being calculated for the industrial stations (0.63, 0.62 for
the suburban–industrial and 0.7, 0.67 for the rural–industrial stations) and the lowest for
the traffic stations (0.47,0.48 for the urban–traffic and 0.43, 0.45 for the suburban–traffic).

Table 2. Statistics of the comparisons between the inferred and in situ NO2 surface concentrations for
the two leveling schemes in winter.

Meteo12 Leveling Scheme Meteo34 Leveling Scheme

Station Type R Slope Relative Bias
(%) R Slope Relative Bias

(%)

Urban traffic 0.47 0.81 −24.55% 0.48 0.85 −20.70%
Suburban traffic 0.43 0.65 −26.90% 0.45 0.69 −23.18%

Urban
background 0.58 1.11 +7.40% 0.58 1.13 +12.00%

Suburban
background 0.48 0.78 +3.90% 0.49 0.86 +10.90%

Rural
background 0.53 0.67 +10.37% 0.55 0.75 +18.29%

Suburban
industrial 0.63 0.76 −15.66% 0.62 0.82 −9.70%

Rural industrial 0.7 0.79 −15.57% 0.67 0.94 −4.32%

In the summer (Table A1), correlations and slopes are generally lower compared to
the winter. For traffic stations, correlations range from 0.10 to 0.32 and slopes from 0.03
to 0.14. Relative biases are extremely high for both leveling schemes (~−75%), showing
an overall poor agreement with the in situ data. This might be attributed to the higher
underestimation of the in situ measurements by the model during the summer. Background
stations show better statistical indicators, especially for the NO2 surface concentrations
derived from the meteo34 leveling scheme. Relative biases are lower for the meteo34
leveling scheme by approximately 8% when compared to meteo12. Finally, industrial
stations show the highest correlations of all the station types (ranging 0.58–0.63) and the
relative bias is lower by ~5% for the surface concentrations derived from the meteo34
leveling scheme.

Overall, the meteo34 leveling scheme yields a better agreement with the in situ mea-
surements. Slopes are closer to 1 and biases are lower for most station types, except for
the background stations in winter, where a modest overestimation of the ground-based
measurements is found. The only significant drawback of applying the meteo34 level-
ing scheme to a larger dataset and longer period is that this option is computationally
more expensive.

3.1.2. S5P/TROPOMI Versions Comparison

Another quantity that affects the results is the product version of the TROPOMI
tropospheric NO2 VCDs. Figures 1c and A1c have already shown differences between
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the TROPOMI v1.3 and the TROPOMI v2.3 NO2 tropospheric VCDs. TROPOMI v2.3
NO2 concentrations are higher by approximately 3% in summer and by 11–18% in winter.
Both v1.3 and v2.3 TROPOMI tropospheric VCDs are used as input in the implemented
methodology for all the possible setups (Table 1). Here, the imprint on the derived NO2
surface concentrations of the third setup is shown for winter. The meteo12 leveling scheme
was applied for the LOTOS-EUROS simulations due to computational reasons.

Figure 8 shows the scatter density plots of the urban traffic and background stations
between the inferred TROPOMI v1.3 and v2.3 NO2 surface concentrations of the third
setup and the in situ measurements, for the winter. Both versions of TROPOMI inferred
NO2 surface concentrations show nearly identical moderate correlations for both urban
traffic and background stations (Figure 8). However, the relative bias is much improved,
and the slope is closer to 1 in the case of the TROPOMI v2.3 inferred data, indicating that
the concentrations of the latter dataset are closer to the ground-based truth.
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The statistical indicators of Table 3 show a significant improvement for the TROPOMI
v2.3-derived NO2 surface concentrations for all station types except from the rural back-
ground stations. More specifically, the mean absolute bias of the urban and suburban traffic
stations decreases from 15.46 to 10.46 µg/m3 and from 20.19 to 11.53 µg/m3, while there is
a significant improvement in the slopes. Urban and suburban background TROPOMI v2.3
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NO2 mean absolute bias improves from 3.86 to −2.21 µg/m3 and from 2.27 to −0.89 µg/m3.
Rural background TROPOMI v1.3 NO2 inferred surface concentrations lay close to the
ground-based stations measurements with a mean absolute bias of 0.05 µg/m3, whereas the
TROPOMI v2.3 slightly overestimates the in situ measurements with a bias of −1.97 µg/m3.
Slopes do not show a major improvement for the TROPOMI v2.3 background-inferred
NO2 surface concentrations. This is possibly related to the known lingering background
values issues of the TROPOMI tropospheric NO2 data [22]. Finally, suburban and rural
industrial TROPOMI v1.3 inferred products show a higher bias compared to the TROPOMI
v2.3 inferred data, by approximately 15%. Slopes are higher for the industrial TROPOMI
v2.3 inferred products, improving from ~0.58 to ~0.78, reinforcing the fact that TROPOMI
v2.3 inferred NO2 surface concentrations correlate better with the in situ measurements.
Correlation coefficients are not included in Table 3, as they are shown extensively in Table 2
and are nearly identical for the comparison of both TROPOMI versions. For the summer
(Table A2), inferred TROPOMI v2.3 NO2 surface concentrations are slightly higher for all
station types by approximately 2 µg/m3. Relative biases are lower by approximately 5%,
14% and 13% for the traffic, background and industrial stations, respectively.

Table 3. Statistics of the comparison between TROPOMI v1.3- and v2.3-inferred NO2 surface concen-
trations with the in situ measurements for the winter.

TROPOMI v1.3 TROPOMI v2.3

Station Type Slope Absolute Bias * Relative Bias (%) Slope Absolute Bias * Relative Bias (%)

Urban traffic 0.71 15.46 −35.41% 0.81 10.64 −24.55%
Suburban traffic 0.48 20.19 −44.93% 0.65 11.53 −26.90%

Urban
background 0.91 3.86 −12.78% 1.11 −2.21 7.40%

Suburban
background 0.73 2.27 −9.94% 0.78 −0.89 3.90%

Rural background 0.66 0.05 −0.25% 0.67 −1.97 10.37%

Suburban
industrial 0.56 7.46 −31.79% 0.76 3.77 −15.66%

Rural industrial 0.59 7.55 −38.03% 0.79 3.05 −15.57%

* in µg/m3.

Overall, the comparisons between the TROPOMI versions and the in situ measure-
ments clearly show that the TROPOMI v2.3-inferred NO2 surface concentrations, after the
application of the updated air mass factors, correlate much better with the ground-based
measurements.

3.1.3. Application of the Updated Air Mass Factors

Another important ingredient in the derivation of NO2 satellite surface concentrations
is the application of the updated air mass factors and averaging kernels to the satellite
retrievals (Equation (4)) and the model simulations (Equation (6)) described in the CSO
operator process. Therefore, the NO2 surface products of all possible setups (Table 1) and
their comparisons with the in situ measurements are examined in order to determine if
the application of the updated air mass factors and averaging kernels improve the results.
As concluded in the previous section, TROPOMI v2.3 is optimal for the derivation of
satellite NO2 surface concentrations, and it is therefore used as input in all setups. For
the LOTOS-EUROS simulations, the meteo12 leveling scheme was applied to the model
configuration, since computational time is important, as the differences between the two
leveling schemes are not so important for this analysis.

Figure 9 illustrates the relative bias among the inferred TROPOMI NO2 surface con-
centrations of all setups and the in situ measurements, and among the LOTOS-EUROS a
priori NO2 surface concentrations and in situ measurements. The relative bias is extremely
high for all setups for the urban and the suburban traffic stations, improving from ~−90%
in the first setup to ~−78% in the third setup. For all different types of background stations,
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we find an improved relative bias. Urban background relative bias improves significantly
from ~−77% to ~−45% and from ~−72% to ~−30% for the suburban background stations
in the third setup. Rural background stations relative bias also decreases for the third setup
from ~−78% to −53%, albeit this improvement is not as remarkable as for the urban and
suburban background stations. Finally, for the suburban and rural industrial stations the
bias notably decreases from ~−73% to ~−51% and from ~−60% to ~−35%, respectively.
Worth mentioning is the fact that LOTOS-EUROS relative bias is quite low (~−8%) for the
rural industrial stations compared to the other datasets. This can be attributed to the fact
that TROPOMI v2.3 NO2 data seem to underestimate NO2 levels over the selected rural
industrial pixels.
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During the winter (Figure 9b), there is an obvious improvement in the relative bias
of all the involved parameters with the in situ measurements for all the station types
compared to the summer results (Figure 9a). Overall, inferred TROPOMI v2.3 NO2 surface
concentrations derived from the third setup seem to provide a more realistic product, closer
to the ground-based truth compared to the baseline setup. More specifically, the bias of the
urban and suburban traffic stations shows a remarkable improvement, ~−25% and ~−27%,
respectively, by approximately 20–30% when compared to the first setup. Suburban and
rural industrial stations bias for the third setup is approximately ~−16%, almost 15% lower
for both station types compared to the first setup. For the background stations, a reversal
of the sign for the relative bias is evident, considering the absolute levels of NO2 over the
background stations, but still is the lowest compared to the other station types. Inferred
TROPOMI v2.3 NO2 surface concentrations slightly overestimate urban and suburban
background in situ measurements by 7.4% and 3.9%, whereas the overestimation is higher
(10.37%) for the rural background stations. It is apparent that the second setup (in blue)
shows a lower bias for the background stations (0.49%, 1.40% and 5.96%). This can be
attributed to the enhancement of the TROPOMI NO2 tropospheric VCDs by the application
of the updated air mass factors and averaging kernels. Finally, inferred TROPOMI NO2
surface concentrations, derived from the baseline setup, show the highest discrepancies
with the in situ measurements for all the station types.

The effect of the air mass factors is better illustrated in the scatter plots of Figure 10. Subur-
ban background (Figure 10a–c) and industrial (Figure 10d–f) stations are depicted. Figure 10a,d,
shows the scatter plots between the in situ measurements and the inferred TROPOMI NO2
surface concentrations of the first setup derived from Equation (7). Figure 10b,e and Figure 10c,f
show the same comparisons, including the inferred TROPOMI NO2 surface concentrations of
the second and the third setup, respectively. The TROPOMI-inferred NO2 surface concentra-
tions of the second setup are calculated with the application of the TM5-MP averaging kernels
to the LOTOS-EUROS simulations, whereas the inferred NO2 surface concentrations of the
third setup are estimated with the application of the updated air mass factors and averaging
kernels on both the TROPOMI data and the model simulations. An improvement of the slope
is found for both the second and third setup, from 0.71 to 0.77 and 0.78 and from 0.63 to 0.73
and 0.76, respectively. This statistical indicator shows that the third setup performs better
compared to the other two setups, and the derived NO2 surface concentrations are closer to
the ground-based data. Correlation coefficients are moderate for the suburban background
station (R~0.5) and good for the suburban industrial stations (R~0.65), varying insignificantly
for each setup.

Concluding, it is obvious that the TROPOMI-inferred NO2 surface concentrations of
the third setup perform better overall. Biases are significantly lower insummer. In winter,
there is a remarkable improvement for the traffic and industrial stations; whereas, for the
background stations, a slight overestimation is found, which, however, does not exceed the
threshold of 10%. We should underline the fact that the second setup performs better for
the background stations.

3.2. Optimal Setup

We have already shown the effect of the three prominent influencing quantities on
the satellite-derived NO2 surface concentrations. The application of the meteo34 leveling
scheme on the model simulations generates higher inferred TROPOMI NO2 surface con-
centrations over land, resulting in a lower bias for all the station types during both periods,
except from the background stations during the winter months. Although the results are
generally improved, we proceeded using the meteo12 leveling scheme mainly due the
high computational time required for the meteo34 leveling scheme simulations. TROPOMI
v2.3 NO2 tropospheric VCDs perform better, and the performance is further enhanced
with the application of the updated air mass factors on both the TROPOMI data and the
model simulations. Hence, the optimal setup comprises the TROPOMI v2.3 NO2 VCDs,
the meteo12 leveling scheme LOTOS-EUROS simulations and the updated air mass factors
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and averaging kernels applied on the satellite data and the LOTOS-EUROS simulations
(setup 3 in Table 1).
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Figure 10. Scatter density plots of the suburban background (upper row) and suburban industrial
(lower row) stations for the winter between the in situ measurements and the inferred TROPOMI
v2.3 NO2 surface concentrations: (a,d) TROPOMI-derived NO2 surface concentrations for the first
setup; (b,e) TROPOMI-derived NO2 surface concentrations for the second setup; (c,f) TROPOMI
-derived NO2 surface concentrations for the third setup.

The simplified Lamsal equation (Equation (7)) introduced significant capabilities in
the derivation of satellite NO2 surface concentrations. However, the simple application of
the a priori model simulations and original satellite data in Equation (7) produces poor
results when compared to ground-based data, as shown in Figure 11. Overall, the NO2
surface concentrations derived from the optimal setup offer a better match with the ground-
based measurements for both periods. During summer, background and industrial stations
exhibit the lowest bias. The differences with the in situ measurements range between 3 and
6 µg/m3 and are lower by 2–4 µg/m3 when compared to the differences in the baseline
setup with the ground-based data. Traffic urban and suburban stations show a high mean
absolute bias of 28 and 25 µg/m3 with the in situ measurements, but this is still much
improved compared to the derived NO2 surface concentrations from the baseline setup.
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v2.3 NO2 surface concentrations for the first (green) and the third (purple) setups: (a) summer;
(b) winter.

During winter, the inferred NO2 surface concentrations of the optimal setup lie close
to the ground-based concentrations of the background stations, with the lowest biases
calculated for urban, suburban and rural areas, −2.22, −0.89 and −1.97 µg/m3, respectively.
This can be attributed to the high known NO2 loads observed by TROPOMI over back-
ground areas [23] and the enhancement of NO2 levels due to the application of the updated
air mass factors and averaging kernels. Industrial station differences are 3–4 µg/m3

, almost
50% lower than the baseline setup. Finally, traffic stations bias shows major improvement
with a mean value ~11 µg/m3, notably lower by ~8–10 µg/m3 than the baseline setup. Note
that the TROPOMI and LOTOS-EUROS resolution is, unavoidably, too low to properly
resolve the high concentrations at traffic stations, resulting in higher biases. However, the
implementation of the local air mass factors to the satellite NO2 VCDs and the model simu-
lations do reduce the bias at the traffic stations. Summarizing the aforementioned findings,
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Table 4 shows analytically the mean NO2 surface concentrations of the EEA stations for the
baseline and the optimal setup for both periods.

Table 4. In situ and TROPOMI v2.3-inferred mean NO2 surface concentrations and standard devia-
tions (in µg/m3) for the first and third setups and both periods.

Summer Winter

Station Type In Situ Setup 1 Setup 3 In Situ Setup 1 Setup 3

Urban traffic 36.02 ± 6.00 3.46 ± 1.86 8.02 ± 2.83 43.34 ± 6.58 25.00 ± 5.00 32.70 ± 5.72
Suburban traffic 31.52 ± 5.61 3.04 ± 1.74 6.77 ± 2.60 42.87 ± 6.55 18.90 ± 4.35 31.34 ± 5.60

Urban background 13.92 ± 3.73 3.21 ± 1.79 7.57 ± 2.75 29.30 ± 5.48 23.06 ± 4.80 32.20 ± 5.67
Suburban background 10.81 ± 3.29 3.03 ± 1.74 7.54 ± 2.75 22.85 ± 4.78 17.21 ± 4.15 23.73 ± 4.87

Rural background 5.90 ± 2.43 1.31 ± 1.15 2.73 ± 1.65 18.96 ± 4.35 15.27 ± 3.91 20.93 ± 4.87

Suburban industrial 11.86 ± 3.44 3.19 ± 1.79 5.75 ± 2.40 24.06 ± 4.91 16.08 ± 4.01 20.29 ± 4.58
Rural industrial 8.49 ± 2.91 3.45 ± 1.86 5.47 ± 2.34 19.59 ± 4.43 13.53 ± 3.68 16.54 ± 4.07

It is clear that the ad hoc implementation of the described baseline methodology
with the original satellite and model data results in significant discrepancies with the
ground-based truth. The product improves significantly when accounting for the effect
of the new TROPOMI product version, averaging kernels and air mass factors. Thus, the
derivation of NO2 surface concentrations is a complicated problem that requires sufficient
knowledge on the existing methodologies and quantities that can bring the results closer to
the ground truth.

4. Conclusions

The aim of this study is to derive NO2 surface concentrations over Central Europe
from the S5P/TROPOMI instrument. To achieve this objective, we implemented the
methodology originally described by the work of [9], for three different setups. The
first setup, which is the baseline setup, includes the a priori TROPOMI v1.3 and v2.3
tropospheric NO2 VCDs and the a priori LOTOS-EUROS simulations of NO2 VCDs and
surface concentrations. The second setup includes the a priori TROPOMI NO2 VCDs and
the LOTOS-EUROS simulations, in which the averaging kernels of the TM5-MP model have
been applied. Finally, the third setup includes the modified TROPOMI and LOTOS-EUROS
NO2 tropospheric VCDs after the application of the updated air mass factors and averaging
kernels via the CSO process and the a priori LOTOS-EUROS NO2 surface concentrations.
The derived concentrations from all setups are compared with EEA in situ measurements.
Furthermore, three important influencing quantities that directly affect the results, namely
the LOTOS-EUROS leveling scheme, the TROPOMI NO2 product versions and the updated
air mass factors and averaging kernels, were examined thoroughly. The main findings of
the study are summarized below.

• The LOTOS-EUROS meteo34 vertical leveling scheme showed overall improved sta-
tistical indicators. Slopes are closer to 1, and the relative bias is lower. In particular,
the relative bias in summer is lower for traffic stations by approximately 2%, for back-
ground stations by 7–9% and for the industrial stations by 5% compared to the relative
bias of the meteo12 scheme. During winter, traffic and industrial stations relative bias
is lower by 4–11%. Meteo34 background stations inferred NO2 TROPOMI v2.3 surface
concentrations are higher by 5–7% compared to the meteo12. Overall, the meteo34
leveling scheme performs better, but it is computationally more expensive. Thus, the
meteo12 leveling scheme was implemented in the further experiments.

• TROPOMI v2.3-inferred NO2 surface concentrations showed overall better agreement
with the ground-based measurements. The relative bias is lower by ~10% and ~18%
for the traffic urban and suburban stations compared to the TROPOMI v1.3 -derived
surface datasets. Urban and suburban background stations show a slightly lower
bias of 5–6%, whereas the rural background stations bias is higher (~10%) than the
TROPOMI v1.3 bias (~−0.25%). Finally, suburban- and rural- industrial-inferred



Remote Sens. 2022, 14, 4886 20 of 24

TROPOMI v2.3 NO2 surface concentrations show an improved relative bias with the
ground-based data (from ~−35% to ~15%).

• The derived TROPOMI v2.3 NO2 surface concentrations, updated with the air mass
factors and averaging kernels from the local model (third setup), lie closer to the
ground-based truth for both periods. In summer, biases are high for the traffic sta-
tions (~−70%) and moderate for background and industrial stations, ranging from
−50% to −30%, improving significantly compared to the first setup. In winter, traffic
and industrial stations bias improves from −50% to −25% and from −30% to −15%.
Background-station-inferred NO2 surface concentrations slightly overestimate the
ground-based measurements in winter. In this case, the second setup shows a lower
bias for the urban (+0.49%), suburban (+1.40%) and rural (+5.96%) background sta-
tions compared to the third setup (+7.40%, +3.90% and +10.37%, respectively). This
enhancement can be attributed to the sharper gradients included in the updated air
mass factors. Comparisons between the first and the third setups show an average
improvement of 24% and 18% in the bias of summer and winter, respectively.

• The implemented methodology performs better for the background and industrial
stations for both periods. This may be attributed to the fact that TROPOMI and
LOTOS-EUROS resolution is too low to properly resolve the high concentrations at
traffic stations, resulting in higher net biases.

• Results are better in winter for all station types. Model simulations are obtained only at
11:00 UTC, which is the closest time to the TROPOMI overpass. The model underesti-
mates the in situ NO2 surface concentrations during daytime and the underestimation
is higher in summer. This might be attributed to the higher photolysis rate of NO2 in
summer (higher solar radiation, low cloud cover), which is maximized in the early
afternoon. Summer NO2 levels are significantly lower and closer to the emission
sources compared to the winter, when the NOX lifetime is higher and local transport of
emissions is more pronounced. Low resolution (0.10◦ × 0.05◦) model simulations and
satellite observations cannot detect emissions at station level, especially in summer,
due to representation issues related to the location of the stations. Differences between
both periods might also be partly attributed to the anthropogenic NOX emissions used
in the model, as they refer to year 2017.

Overall, the derived TROPOMI v2.3 NO2 surface concentrations of the third setup
show the best agreement with the in situ measurements. The ultimate goal of this study is to
provide inferred S5P/TROPOMI NO2 surface concentrations with a reliable methodology,
for areas where in situ measurements are not available. The third setup, which is optimal,
seems to respond sufficiently to this task with room for improvement.
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Table A1. Statistics of the comparison between the inferred and in situ NO2 surface concentrations
for the two leveling schemes and the summer period.

New Leveling Scheme Meteo Leveling Scheme

Station Type R Slope Relative Bias
(%) R Slope Relative Bias

(%)

Urban traffic 0.32 0.13 −77.96% 0.32 0.14 −75.14%
Suburban traffic 0.10 0.03 −78.52% 0.11 0.04 −76.18%

Urban background 0.46 0.38 −45.68% 0.45 0.42 −38.90%
Suburban background 0.52 0.49 −30.58% 0.50 0.54 −21.04%

Rural background 0.46 0.23 −54.31% 0.44 0.24 −47.58%

Suburban industrial 0.58 0.29 −51.54% 0.58 0.32 −46.01%
Rural industrial 0.63 0.34 −37.47% 0.61 0.36 −32.30%

Table A2. Statistics of the comparison between TROPOMI v1.3- and v2.3-inferred NO2 surface
concentrations with the in situ measurements for the summer period.

TROPOMI v1.3 TROPOMI v2.3

Station Type Slope Absolute Bias * Relative Bias
(%) Slope Absolute Bias * Relative Bias

(%)

Urban traffic 0.11 29.45 −81.80% 0.81 28.00 −77.74%
Suburban traffic 0.02 25.88 −81.60% 0.65 24.75 −78.52%

Urban background 0.31 7.98 −56.50% 1.11 6.35 −45.61%
Suburban background 0.39 4.82 −43.77% 0.78 3.27 −30.25%

Rural background 0.19 3.47 −59.21% 0.67 3.17 −53.79%

Suburban industrial 0.19 7.76 −64.19% 0.76 6.11 −51.54%
Rural industrial 0.23 4.40 −49.90% 0.79 3.02 −36.62%

* in µg/m3.
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