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S1 DOAS retrieval of NO2 slant column densities

The DOAS procedure minimises the difference between

the measured spectrum Rmeas(λ) and a modelled spectrum

Rmod(λ) within a given wavelength window, in the form of

minimisation of a chi-squared merit function:

χ2 =

Nλ
∑

i=1

(

Rmeas(λi)−Rmod(λi)

∆Rmeas(λi)

)2

, (S1)

with Nλ the number of wavelengths in the fit window and

∆Rmeas(λi) the precision of the measurements.

The measured reflectance Rmeas(λ) is given by:

Rmeas(λ) =
πI(λ)

µ0 I0(λ)
, (S2)

with I(λ) the radiance at top-of-atmosphere, I0(λ) the

extraterrestrial solar irradiance spectrum, and with µ0 =
cos(θ0) the cosine of the solar zenith angle (the viewing ge-

ometry dependence of I is omitted for brevity). Here I(λ)
and I0(λ) share the same wavelength grid, i.e. an appropriate

wavelength calibration has been applied prior to the DOAS

fit (see Sect. 4.2 in the main paper). The I0(λ) in use for the

DOAS retrieval of OMNO2A is an average of the solar spec-

tra measured by OMI using the Quartz Volume Diffusor in

2005, which is used on a daily basis.

In the OMI slant column retrieval the modelled reflectance

is expressed in terms of intensities, which leads to a non-

linear fit problem. This approach allows to describe the ef-

fects of inelastic scattering after a scattering event has oc-

cured (as given by Eq. (1) in the main paper):

Rmod(λ) = P (λ) ·exp

[

−
Nk
∑

k=1

σk(λ) ·Ns,k

]

·

(

1+ CRing

IRing(λ)

I0(λ)

)

, (S3)

with P (λ) a polynomial of degree Np, σk(λ) the cross sec-

tion and Ns,k the slant column amount of molecule k taken

into account in the fit (NO2, O3, etc.), CRing the Ring fitting

coefficient and IRing(λ)/I0(λ) the sun-normalised synthetic

Ring spectrum. The Ring spectrum describes the differential

spectral signatures arising from inelastic Raman scattering

of incoming sunlight by N2 and O2 molecules. The last term

between brackets in Eq. (S3) describes both the contribution

of the direct differential absorption (i.e. the 1), and the modi-

fication of these differential structures by inelastic scattering

(the +CRing IRing(λ)/I0(λ) term) to the reflectance spectrum.

An alternative approach used by most DOAS applica-

tions – including the QDOAS software (Danckaert et al.,

2012) used by BIRA-IASB for the processing of data from

GOME-2 and SCIAMACHY (cf. Sect. S2.1) – applies a fit-

ting in terms of the optical density, i.e. the logarithm of the

reflectance. This allows for a linearisation of the problem, by

writing the modelled reflectance as follows:

ln
[

Rmod(λ)
]

= P ∗(λ) −
Nk
∑

k=1

σk(λ) ·Ns,k

− σRing(λ) ·C
∗

Ring , (S4)

with σRing(λ) the differential (pseudo-absorption) spectrum

of the Ring effect and C∗

Ring its fitting coefficient, where

σRing(λ) is constructed from the Ring radiance spectrum

IRing(λ), a reference solar spectrum Iref(λ) (which is differ-

ent from the measured solar spectrum I0(λ) in Eq. (S3)) and

a low order polynomial. DOAS applications using Eq. (S4)

often also fit a non-linear offset parameter to account of at-

mospheric and/or instrumental stray light or residual dark

current signals; such an offset parameter is not needed in the

non-linear approach of Eq. (S3), because in that case the off-

sets are captured by the polynomial. Note that in the linear

DOAS approach of Eq. (S4) the treatment of the measure-

ment errors in the spectrum, and therewith the details of the

NO2 slant column error, is different from the non-linear ap-

proach of Eq. (S3).

QDOAS also has the option to apply a non-linear inten-

sity fitting method instead of the linear optical density fitting

method of Eq. (S4), similar to the OMNO2A non-linear fit-

ting method of Eq. (S3), but with the Ring effect treated as a

pseudo-absorber:

Rmod(λ) = P (λ) · exp

[

−
Nk
∑

k=1

σk(λ) ·Ns,k

− σRing(λ) ·C
∗

Ring

]

. (S5)

A measure of the goodness of the fit is the so-called root-

mean-square (RMS) error, which is defined as follows in case

of the intensity fitting approach:

RMS =

√

√

√

√

1

Nλ

Nλ
∑

i=1

(Rmeas(λi)−Rmod(λi))
2 , (S6)

while in the linear fitting mode of QDOAS the definition is:

RMS∗ =

√

√

√

√

1

Nλ

Nλ
∑

i=1

(ln[Rmeas(λi)]− ln[Rmod(λi)])
2
, (S7)

which is always larger than the RMS of Eq. (S6) for the spec-

tra investigated here. The difference between the measured

and modelled reflectances is usually referred to as the resid-

ual of the slant column fit:

Rresid(λ) =Rmeas(λ)−Rmod(λ) . (S8)

S2 Comparison with ground-based NO2 data

S2.1 Ground-based NO2 observations in UV-Vis and IR

Satellite observations of NO2 have been compared to ground-

based measurements in several studies. Hendrick et al.
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(2012), for example, performed an extensive comparison of

measurements acquired at the Jungfraujoch station (46.5◦ N,

8.0◦ E), part of NDACC (Network for the Detection of At-

mospheric Composition Change), with data from GOME-2

and SCIAMACHY. The Jungfraujoch station is located at

3580 m a.s.l., which means that most of the year the observa-

tory is above the boundary layer and the instruments measure

NO2 in the free troposphere and stratosphere. Hendrick et al.

(2012) found that the data of independent SAOZ and FTIR

measurements match each other and stratospheric NO2 data

from GOME-2 and SCIAMACHY quite well (with SAOZ

biased by +8% w.r.t. FTIR).

The SAOZ instrument, operated by BIRA-IASB, is a

broad-band (300–600 nm) spectrometer that measures zenith

scattered sunlight (Pommereau end Goutail, 1988). Vertical

column densities are derived by using the standard four-step

approach (e.g. Hendrick et al., 2012), using the NDACC

UV/Vis Working Group recommendations. Since these are

described in detail on the NDACC website 1, only the main

features are given here. The NO2 is retrieved in the 425–

495 nm wavelength window, taking into account absorp-

tion by NO2, ozone, water vapour and O2–O2, the Ring ef-

fect, and a 3rd order polynomial. In the conversion of slant

to vertical NO2 columns, the NDACC NO2 AMF climatol-

ogy based on the harmonic climatology of stratospheric NO2

profile developed by Lambert et al. (1999, 2000) has been

used. SAOZ measurements contaminated by strong pollution

events coming from the valley below the station have been

filtered out.

Using the BIRA-IASB stacked box photochemical model

PSCBOX (Hendrick et al., 2004), daily initialized with

SLIMCAT chemical and meteorological fields, a photochem-

ical correction is determined: for each day, 90◦ solar zenith

angle (SZA) sunrise and sunset SAOZ data are converted to

the satellite overpass SZA of that day, after which the aver-

age of both SAOZ NO2 column values can be compared to

the corresponding satellite measurement.

The FTIR instrument, operated by the University of Liège,

is a spectrometer that measures high-resolution solar ab-

sorption spectra under clear-sky conditions (Zander et al.,

2008). The NO2 retrieval is extensively described by Hen-

drick et al. (2012). In brief, two microwindows are used:

2914.6–2914.7 cm−1 and 2915.0–2915.11 cm−1, taking into

account absorption by ozone, water vapour and methane.

Vertical profiles and corresponding column densities are de-

rived using the Optimal Estimation-based SFIT-2 algorithm

(e.g. Rinsland et al., 1998). Here also, a photochemical cor-

rection determined with the PSCBOX model is applied to

the column data: for each day where FTIR measurements

are available, all retrieved FTIR vertical columns are pho-

tochemically converted to the satellite overpass SZA of that

day, after which the average of all corrected FTIR NO2

1 See on http://wwww.ndacc.org/ the UV/Vis (@BIRA) page.
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Fig. S1. Monthly average absolute differences between SAOZ

(filled symbols) and FTIR (open symbols) groundbased measure-

ments of NO2 in 1015 molec/cm2 at Jungfraujoch (46.5◦ N, 8.0◦ E)

and satellite based measurements by OMI (2004–2012, red solid

lines), GOME-2 (2007–2012, blue dotted lines) and SCIAMACHY

(2002–2012, black dashed lines). There is insufficient SAOZ data

in September for reliable averages.

columns of the day is compared to the corresponding satellite

measurement.

Total random and systematic uncertainties on the FTIR

column data have been evaluated at 11% and 36%, respec-

tively (Hendrick et al., 2012; Table 2 in Rinsland et al., 2003).

In the case of SAOZ measurements, error sources have been

quoted in Van Roozendael et al. (1994) and Hendrick et al.

(2012). Taking into account the past NDACC NO2 intercom-

parison exercises (e.g. Vandaele et al., 2005; Roscoe et al.,

2010), a total uncertainty of 12% on the retrieved NO2 verti-

cal columns is derived.

S2.2 Comparison with ground-based NO2 data

The comparison of SAOZ and FTIR data at the Jungfrau-

joch station with satellite data by Hendrick et al. (2012) was

repeated now also including OMI data and extending the

GOME-2 and SCIAMACHY datasets up to the end of 2012.

For this comparison the SAOZ and FTIR data have been cor-

rected with a photochemical model (PSCBOX; Hendrick et

al. (2004)) to the local overpass times of the satellite sensors.

For the Jungfraujoch station the model predicts an average

temporal difference between OMI and the mid-morning sen-

sors GOME-2 and SCIAMACHY of +0.5×1015 molec/cm2.

Fig. S1 shows the averaged monthly mean differences be-

tween the three satellite sensors and the SAOZ and FTIR

measurements for 2007-2012. Since the data of GOME-2,

SCIAMACHY, SAOZ and FTIR agree to within 0.2×
1015 molec/cm2, the ground-based measurements clearly

suggest that OMI stratospheric NO2 retrievals are biased

high by 0.3−0.8×1015 molec/cm2, or +0.5×1015 molec/cm2
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Table S1. Average differences and corresponding standard devia-

tions between SAOZ and FTIR groundbased measurements of NO2

at Jungfraujoch (46.5◦ N, 8.0◦ E) and satellite based measurements

by OMI, GOME-2 and SCIAMACHY, given both for the full data

period and for the data period common to the satellite instruments

(2007–2012). The relative difference (right column) is given as per-

centage of the groundbased NO2 column values.

instruments absolute difference relative difference

period [×1015 molec/cm2] [%]

OMI − SAOZ

2004–2012 +0.43 ± 0.28 +18.3 ± 12.8
2007–2012 +0.48 ± 0.25 +20.9 ± 12.4

GOME-2 − SAOZ

2007–2012 +0.09 ± 0.21 +5.4 ± 11.2
SCIAMACHY − SAOZ

2002–2012 −0.12 ± 0.25 −5.2 ± 11.2
2007–2012 −0.02 ± 0.23 −1.3 ± 11.4

OMI − FTIR

2004–2012 +0.56 ± 0.22 +23.0 ± 11.0
2007–2012 +0.54 ± 0.21 +21.5 ± 9.6

GOME-2 − FTIR

2007–2012 +0.12 ± 0.17 +6.6 ± 9.1
SCIAMACHY − FTIR

2002–2012 +0.02 ± 0.20 +0.7 ± 9.1
2007–2012 −0.001 ± 0.20 −0.2 ± 8.9

on average. Table S1 provides an overview of the yearly

mean differences over the 2007-2012 period, as well as

for the complete sensor records of SCIAMACHY (2002-

2012) and OMI (2004-2012). The difference between the

GOME-2 and SCIAMACHY results is of the order of 0.1×
1015 molec/cm2, which is consistent with the offset between

GOME-2 and SCIAMACHY in stratospheric NO2 over the

Pacific Ocean.

S3 The OMI slit function & convolution of the reference

spectra

The spectral resolution of the instrument covers a finite

wavelength interval, which effectively averages the incident

(ir)radiance – which varies on a much finer wavelength scale

– over that interval: the incoming light is convolved by the so-

called instrument transfer function (ITF) or slit function, with

the full-width at half-maximum (FWHM) of the slit function

determining the spectral resolution of the instrument. Since

the reference spectra are generally measured with a much

higher spectral resolution than the OMI resolution, they have

to be convolved with the instrument slit function as well for

usage in e.g. a DOAS retrieval. Some reference spectra are

spectrally smooth (cf. Fig. S6), in which case a convolution

will not make much difference. For consistency, however, all
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Fig. S2. Main plot: Difference between the OMI average slit func-

tion Sa with the slit function Sn for selected individual rows n at

the centre wavelength λi = 435 nm. Top inset: The OMI average

slit function at λi = 435 nm. Bottom inset: The area A(Sn(λi))
below the curves of the main plot as a function of the row number

n, with rows 12 and 47 marked by a filled circle; see Eq. (S10) for

the definition of this quantity.

reference spectra for OMNO2A are convolved as described

below.

S3.1 The OMI slit function

During on-ground calibrations prior to launch, the OMI slit

function was measured and described by a parametrised

broadened Gaussian function with a FWHM value of about

0.63 nm (Dirksen et al., 2006). The OMI slit function, des-

ignated S here, is a function of wavelength and depends on

the viewing angle, i.e. it differs from detector row to detec-

tor row: Sn(λi,λ), with n= 0, . . . ,59 the row number and

λi the wavelength of detector pixel i, which is counted along

the flight track from south to north. For each λi the slit func-

tion covers the wavelength range λ= [λi−1.5 : λi+1.5] nm,

where the 1.5 nm represents approximately three times the

FWHM of OMI. Within this range, the slit function is given

in steps of 0.01 nm.

The operational OMNO2A processor is programmed such

that it is not feasible to take the row dependency in the cross

sections, i.e. in the slit function, explicitly into account. To

circumvent this issue an average slit function Sa is defined

for convolving the reference spectra, by taking an average

over the slit functions of the middle 36 rows:

Sa(λi,λ) =
1

36

47
∑

n=12

Sn(λi,λ) , (S9)

which is representative for most detector rows (see below).

The main plot of Fig. S2 shows the difference between the

average slit function and the slit functions of selected rows
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in the NO2 fit window.

for the wavelength λi = 435 nm: the slit functions of rows

12–47 differ by at most 1%; for the outer rows the difference

w.r.t. the average is up to 4%. The top inset of Fig. S2 shows

the average slit function Sa(λi,λ) for λi = 435 nm. The slit

function is slightly asymmetric w.r.t. the central wavelength,

and this asymmetry differs from row to row, which is why

the difference curves in the main plot are not symmetric.

A measure for the difference between the average slit func-

tion Sa and the slit function Sn of an individual row is the

area of the difference curves shown in Fig. S2:

A(Sn(λi)) =

λi+1.5
∫

λi−1.5

∣

∣Sa(λi,λ)−Sn(λi,λ)
∣

∣dλ , (S10)

where the integral is evaluated by way of a simple summa-

tion with steps of ∆λ= 0.01 nm. The value of this area for

λi = 435 nm is shown in the bottom inset of Fig. S2, with

the differences for rows 12 and 47 marked by a filled cir-

cle; A(S12(λi)) and A(S47(λi)) are about 0.004. From this

graph it is clear that Sa is representative for most of the de-

tector rows. For the outer 5 rows on either side Sa is less

representative; the slit function for rows 3 and 55, for exam-

ple, differs by up to 2.5% from the average, with A(S3(λi))
and A(S55(λi)) about 0.011.

The wavelength dependency of the slit function is illus-

trated in Fig. S3, which shows the difference of the average

slit function for selected wavelengths with the average slit

function at λi = 435 nm (which is shown in the top inset of

Fig. S2); these differences are between −1.5% for 405 nm

and +0.7% for 465 nm. The curves of the differences are

nearly symmetric w.r.t. the central wavelength, which means

that the asymmetry of the slit function does not vary much

with wavelength.

S3.2 Convolution of reference spectra

Convolution of a reference spectrum σh
k (λ) for trace gas k

can be written as follows:

σk(λi) =
1

S0(λi)

λi+1.5
∫

λi−1.5

σh
k (λ)Sa(λi,λ)dλ , (S11)

where the superscript h indicates it concerns a high-

resolution spectrum, and S0(λi) is the normalisation factor:

S0(λi) =

λi+1.5
∫

λi−1.5

Sa(λi,λ)dλ . (S12)

The limited spectral resolution of typical DOAS instru-

ments leads to an interference between the absorption cross

sections of the trace gases and the Fraunhofer structures in

the solar spectrum I0(λ), and the division in Eq. (S2) does

not fully remove the Fraunhofer structures, because the divi-

sion and the convolution cannot be exchanged (e.g. Platt et

al., 1997). This so-called ”I0-effect” can be corrected for by

including a high-resolution solar reference reference spec-

trum Ihref(λ) in the convolution. In the case of weak ab-

sorbers, like those relevant in the NO2 fit window, Eq. (S11)

is then written as follows:

σk(λi) =
1

S′

0(λi)

λi+1.5
∫

λi−1.5

σh
k (λ)I

h
ref(λ)Sa(λi,λ)dλ , (S13)

with S′

0(λi) the normalisation factor:

S′

0(λi) =

λi+1.5
∫

λi−1.5

Ihref(λ)Sa(λi,λ)dλ . (S14)

For most atmospheric absorbers the I0-effect is weak and can

often be neglected, but usually it is corrected for in the refer-

ence spectra used in the NO2 retrieval. The Ihref(λ) spectrum

used is taken from Dobber et al. (2008); see Sect. S4.1. And

Iref(λ), computed following Eq. (S11), represents the con-

volved reference solar spectrum.

S4 Reference spectra

As mentioned in the main paper, the relevant reference spec-

tra for OMNO2A have been recreated taking the wavelength

and row dependency of the slit function into account in the

form of a row-average slit function (Sect. S3). All convolved

reference spectra are created at a 0.01 nm sampling. The ref-

erence spectra labelled ”v2006” refer to those used in the

current OMNO2A processor (used in e.g. the DOMINO v2.0

dataset), while ”v2014” refers to the updated reference spec-

tra. The relation between these labels and the official version

numbering of OMNO2A is described in Sect. S5.
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the fit window.

S4.1 Solar reference spectrum

A high-resolution solar reference spectrum plays a key role in

three aspects of the slant column processing, as it is used in:

(a) the convolution of the high resolution trace gas references

spectra and the generation of the H2Ovap and Ring reference

spectra, (b) the wavelength calibration of the Earth radiance

spectrum I(λ), and (c) the interpolation of the wavelength

grid of I(λ) onto the wavelength grid of the Solar irradiance

I0(λ), to be able to calculate the reflectance in Eq. (S2).

The high-resolution solar reference spectrum Ihref(λ) used

for the updated OMNO2A processing is taken from Dob-

ber et al. (2008). Fig. S4 shows a comparison of the current

(v2006; see Voors et al., 2006) and updated (v2014) con-

volved solar reference spectra Iref(λ). Differences between

the two are 1.0−1.5% at most wavelengths; near 430 nm, the

difference is 2.1%, while below 420 nm the differences is less

than 1.0%. The absolute differences between both the high-

resolution and the convolved spectra is shown in Fig. S5.

S4.2 Absorption reference spectra

This section discusses the trace gas reference spectra used in

the OMI NO2 DOAS fit – see Sect. 4.1 of the main paper.

The updated (v2014) absorption reference spectra are shown

in Fig. S6, while the differences between the current (v2006)

and new spectra of some absorbers are shown in Fig. S7.

NO2

The source for the NO2 cross sections, the 220 K dataset

of Vandaele et al. (1998), remains unchanged. Small differ-
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Fig. S5. Difference between the high-resolution (green dashed line)

and convolved (red solid line) updated v2014 and current v2006

solar reference spectra used in OMNO2A.

ences between the current v2006 and the updated v2014 NO2

reference spectra, seen in the top-left panel of Fig. S7, are re-

lated to the use of the updated slit function and Ihref(λ) in the

convolution given by Eq. (S13). These differences are of the

order of 1−3% and are therefore not expected to lead to sig-

nificant changes in the retrieved NO2 value.

O3

The O3 cross sections for the visible range in the current

OMNO2A were based on the data from WMO (1975). These

cross sections are replaced by the 223 K dataset from Bogu-

mil et al. (2000), version 3.0 (Dec. 2004), which is resampled

using a cubic spline interpolation on a 0.01 nm grid and sub-

sequently convolved with Eq. (S13). The top-right panel of

Fig. S7 shows a comparison of the v2006 and v2014 O3 ref-

erence spectra: for most wavelengths the difference is more

or less an offset; at 420 nm the difference is about 35%, at

450 nm about 10%.

H2Ovap

Absorption by water vapour (H2Ovap) takes place in the

form of a multitude of spectrally fine absorption lines, rather

than as a smooth function of wavelength, so that Eq. (S13)

cannot be simply applied to create a convolved reference

spectrum suitable for the DOAS retrieval. Instead, an ef-

fective reference spectrum for H2Ovap absorption is deter-

mined from two simulated reflectance spectra, one with and

one without water vapour absorption determined following

Sneep et al. (2013):

R(λ) =R0(λ)
(

1−Ns,H2Ovap
·σH2Ovap

(λ)
)

, (S15)

where R(λ) is a reflectance spectrum with a water vapour

concentration with slant column value Ns,H2Ovap
and R0(λ) a

reflectance spectrum without water vapour.
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Fig. S6. Graph of the absorption spectra of NO2, O3, H2Ovap,

O2–O2 and H2Oliq, as well as the Ring radiance spectrum (IRing)

taken into account in the DOAS fit of the updated OMNO2A pro-

cessor.

Both R(λ) and R0(λ) are simulated with the radiative

transfer code DISAMAR (de Haan, 2011) in a line-by-line

forward calculation on the basis of the high-resolution solar

spectrum Ihref(λ) mentioned in Sect. S4.1 and the absorption

lines of all six isotopes of H2Ovap from the HITRAN 2012

database (Rothman et al., 2013), without any other atmo-

spheric trace gases present (obviously the main atmospheric

gases O2 and N2 are present). The simulations use US stan-

dard atmosphere profiles (Anderson et al., 1986) for pressure,

temperature and H2Ovap, where the latter has a total column

amount of 4.76×1022 molec/cm2. In the simulations of R(λ)
and R0(λ), convolution with the OMI slit function and the

I0-correction (cf. Sect. S3.2) are automatically applied.

After simulating R(λ) and R0(λ), and using that

Ns,H2Ovap
= 4.76×1022 molec/cm2, Eq. (S15) provides the

absorption reference spectrum σH2Ovap
(λ). Since this spec-

trum results from narrow line absorption features, there is

no need to subtract a low-order polynomial, as is custom to

generate differential absorption spectra: σH2Ovap
(λ) is the ab-

sorption reference spectrum suitable for use in a DOAS re-

trieval.

The bottom-left panel of Fig. S7 compares the updated

v2014 H2Ovap reference spectrum and the current v2006 one,

which is based on Harder and Brault (1997) and was updated

in 2007 based on HITRAN 2004 data. Some absorption peak

values in the ranges 440–450 nm and 415–420 nm are clearly

reduced, while the absorption in the range 425–430 nm is

much weaker in the v2014 reference spectrum. Note also that

some of the peaks in the v2006 seem to be narrower than

the OMI slit function, indicating that something was clearly

wrong with the v2006 H2Ovap spectrum.

 3

 4

 5

 6

 7

 8

 9

 410  420  430  440  450  460

N
O

2

wavelength  [nm]

  0

  1

  2

  3

  4

  5

 410  420  430  440  450  460

O
3

wavelength  [nm]

v2014
v2006

 0

 1

 2

 3

 4

 5

 410  420  430  440  450  460

H
2O

va
p

wavelength  [nm]

3.0

3.5

4.0

4.5

5.0

 410  420  430  440  450  460

R
in

g 
ra

d.

wavelength  [nm]

Fig. S7. Comparison of updated v2014 (solid red lines; cf. Fig. 3

in the main paper) and current v2006 (dashed blue lines) refer-

ences spectra of the trace gases NO2 (top left;×10−19 cm2/molec),

O3 (top right; ×10−22 cm2/molec) and H2Ovap (bottom left;

×10−26 cm2/molec), and the Ring radiance spectrum (bottom right;

×1014 ph/s/nm/cm2/sr) in the OMNO2A processing. Note that ab-

sorption by O2–O2 and H2Oliq was previously not accounted for in

OMNO2A.

O2–O2

The collision between two oxygen molecules in the atmo-

sphere gives rise to so-called O2–O2 absorption. The absorp-

tion peak around 446 nm lies in the NO2 fit window, as does

the tail of the absorption peak around 477 nm (cf. Fig. S6).

The latter peak is used in the OMI OMCLDO2 data product

for the retrieval of cloud information within the 460–490 nm

wavelength window.

In the current OMNO2A processing, absorption by O2–O2

was not taken into account, as tests with v2006 pointed out

that including O2–O2 did not significantly affect the RMS

error of the fit (cf. Bucsela et al., 2006). As described in

Sect. 5.2 in the main paper, however, including O2–O2 im-

proves the NO2 fit in other ways.

Recently Thalman and Volkamer (2013) have released a

new cross section database for O2–O2 absorption, given at

293 K and 203 K, which compares very well with the data

from Hermans et al. (1999) – which is used in many NO2

retrievals, such as for the GOME-2 and SCIAMACHY data

used above, and also for the OMCLDO2 cloud product – but

has a higher signal-to-noise. For this reason the Thalman and

Volkamer (2013) 293 K cross section data are selected as

v2014 reference spectrum, but with a correction for a small

spurious jump around 432 nm, for which the 203 K spec-

trum is used. Subsequently, the spectrum is resampled using

a cubic spline interpolation on a 0.01 nm grid, followed by a

convolution with Eq. (S13).



J. van Geffen et al.: Improved spectral fitting of nitrogen dioxide from OMI – Supplement 7

H2Oliq

Accounting for absorption of light by liquid water

(H2Oliq), in particular in clear ocean water, has been con-

sidered before in the retrieval of glyoxal (Lerot et al., 2010)

and of NO2 (Richter et al., 2011). In the current OMNO2A

processing H2Oliq is not taken into account. As described

in Sect. 5.2 of the main paper including H2Oliq clearly im-

proves the spectral fit of NO2 for clear-sky situations over

clear ocean waters when using a fit window that is wider than

425–450 nm.

The absorption coefficients of liquid water are taken from

Table 3 of Pope and Fry (1997). This reference spectrum is

very smooth with wavelength, as can be seen in Fig. S6, so

that a convolution of the spectrum is not strictly necessary.

For consistency, however, convolution and I0-correction are

applied as with the other reference spectra. The absorption

coefficients σH2Oliq
have unit m−1, so that the fit coefficient

Ns,H2Oliq
is the length of the average light path in water (in m).

Ring effect

Accounting for the Ring effect (Grainger and Ring, 1962;

Chance and Spurr, 1997) in the spectral fit requires either a

Ring radiance spectrum IRing(λ) or a (pseudo) Ring differen-

tial cross section σRing(λ), where the latter is essentially the

difference between IRing divided by a reference solar spec-

trum and subtracting a low order polynomial.

For OMNO2A the IRing(λ) is computed following Chance

and Spurr (1997), using the updated slit function, with the

radiative transfer code DISAMAR (de Haan, 2011) in a

line-by-line forward calculation on the basis of the high-

resolution solar spectrum Ihref(λ), assuming a pure Rayleigh

atmosphere, i.e. without absorbing trace gases. The bottom-

right panel of Fig. S7 shows the current v2006 and the up-

dated v2014 Ring radiance reference spectra IRing(λ) for the

non-linear OMNO2A retrieval; differences are of the order of

2%. The σRing(λ) for the linear tests in Sect. 5.3 in the main

paper is constructed by subtracting a 2nd order polynomial

from the ratio IRing(λ)/Iref(λ).

S4.3 Ring coefficient and detector row 0

In the current v2006 OMNO2A processing, the term for

the Ring effect contains a normalisation factor, which en-

sures that the ratio IRing(λ)/I0(λ) in Eq. (S3) is about 1

(one) for the fit window. This normalisation clearly affects

the resulting value of the CRing fit coefficient. In the new

v2014 OMNO2A processing, the Ring normalisation option

is switched off, thus giving more physically meaningful re-

sults for the coefficient CRing.

The OMI solar irradiance I0(λ) used in the DOAS re-

trieval (see Sect. S1) is given as one spectrum for each of

the 60 detector rows: I0(λ,n), with n= 0,1, . . . ,59 the row

number, where row 0 (59) is at the western (eastern) most end

of the swath. Since observing the sun is essentially viewing

angle independent, one expects that the I0(λ,n) measured
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Fig. S8. OMI solar irradiance spectra in the NO2 fit window for

three detector row pixels: row 0 (red solid line), row 59 (blue dashed

line), and row 29 as example for the intermediate rows (magenta

dotted line). The irradiance spectra for rows 1 through 58 are in-

distinguishable from one another when plotted in this manner; any

small difference between them is related only to the row and wave-

length dependency of the OMI slit function.

by OMI is essentially the same for the 60 detector rows (any

difference being related only to the row and wavelength de-

pendency of the OMI slit function).

But the I0(λ,0) appears to be much higher and the

I0(λ,59) a little higher than the irradiance for rows 1 through

58. This is illustrated in Fig. S8, which uses the irradiance

of row 29 as being representative for rows 1 through 58. To

bring the irradiance of the outer two rows to the irradiance

level of the other rows, I0(λ,0) needs to be multiplied by

0.55 and I0(λ,59) by 0.98.

The reason that I0(λ,0) and I0(λ,59) are higher than the

irradiance of the other rows lies in the fact that the outer two

ground pixels are not correctly matched onto the detector and

the level 0-to-1b processor does not account for this when

scaling the irradiance (Q. Kleipool, pers. comm.). For the

same reason, also the Earth radiances I(λ,n) (not shown)

for rows 0 and 59 are too high by the same factor.

As a result, the reflectance given by Eq. (S2) is not affected

and the problem of too high (ir)radiance values for rows 0

and 59 does not show up in the fit parameters directly linked

to the reflectance, i.e. the coefficients of the polynomial, the

trace gas slant columns in Eq. (S3) and Eq. (S4), and the

Ring coefficient in the linear fit approach of Eq. (S4), nor

in the errors on these fit parameters. It will, however, show

up in the Ring term of the OMNO2A non-linear fit approach

of Eq. (S3), because of the division by I0(λ), now that the

normalisation of IRing(λ)/I0(λ) mentioned at the beginning

of this section has been switched off.

This is illustrated Fig. S9, which shows the Ring fit coef-

ficient as a function of the detector row number for the cur-
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Fig. S9. Average Ring coefficient from the OMNO2A non-linear fit

as a function of the OMI detector row number, for three cases: the

current v2006 data (dashed blue line), the v2006 settings but with

the normalisation switched off (dotted black line), and the updated

v2014 data (solid red line); the difference between the latter two is

caused by the updates described in the main paper. The average is

computed over the 863 along track pixels of the swaths with their

row-0 ground pixels in the latitude range [−50 : +50] of the Pacific

Ocean test orbit.

rent v2006 processing with Ring normalisation (dashed blue

line), the same settings but with the normalisation switched

off (dotted black line) and the updated v2014 processing for

which the normalisation is switched off (solid blue line). The

Ring coefficient of row 0 is clearly much higher when nor-

malisation is switched off, and the other updates of the pro-

cessing described in the main paper have little effect on the

Ring coefficient. Multiplying the v2014 Ring coefficient of

row 0 by the above mentioned factor of 0.55 brings its value

to 0.0473, which is close to the v2006 row 0 value, somewhat

low compared to the v2014 values for rows 1 and above, but

all in all a reasonable value. At row 59 the irradiance is only

marginally higher than it should be, which is not visible in

the Ring coefficient.

S5 OMNO2A processor version numbering

The OMI NO2 slant column retrieval processor OMNO2A

provides the data in HDF-EOS files. These files are in-

put for the processors that provide NO2 vertical strato-

spheric and tropospheric column data, notably the DOMINO

datasets from KNMI and NASA’s ”Standart Product” (SP).

The OMNO2A data files are given a version number consist-

ing of three or four digits, where the 4th digit refers to minor

bug fixes only and is ignored here.

Table S2 lists the changes in the OMNO2A versions rele-

vant in view of the updates described in this paper. The first

column gives the main version number, the second the date

this version was introduced. The data range covered by the

version is given in the third column, but only for the versions

of which the NO2 SCD data is in use for subsequent pro-

cessing, which is listed in the last column of the Table. The

version of the reference spectra (Sect. 4.1) is given in the

fourth column and the version of the wavelength calibration

(Sect. 4.2) in the fifth column.

The current OMNO2A processor runs in two branches,

each with its own version number: 1.1.1 for the

DOMINO v2.0 NO2 data products and 1.2.3 for the

NASA SP v2.1 NO2 data products. The differences between

these two lies mainly in the update of the surface albedo

and cloud cover data transferred to the NO2 SCD data files

as well as a number of additional HDF-EOS attributes for

tracking data pixel quality; these differences do not affect

the NO2 SCD data itself. The version number ”v1” used

in Sect. 5, refers to these NO2 SCD data, i.e. to the data

of OMNO2A versions 1.0.5 – 1.2.3, while the version

number ”v2” refers to the forthcoming data with OMNO2A

version 2.0.

For the forthcoming TROPOMI NO2 processing it is

planned to provide more information regarding the versions

of the different processing elements in the meta data of the

final NO2 data product.

S6 Comparison between OMNO2A and QDOAS

As noted in Sect. 5.3 of the main paper, the NO2 SCD dif-

ferences displayed in Fig. 11 show a clear latitudinal vari-

ation around latitudes 20◦ S and 20◦ N – areas of the Pa-

cific Ocean where absorption in liquid water plays a role

(cf. Sect. 5.2) – for the three curves where QDOAS was used

in the linear fitting mode, while for QDOAS’s non-linear fit-

ting mode the differences with OMNO2A are nearly inde-

pendent of latitude. This may indicate that the linear fitting

method deals differently with the polynomial-like signature

of H2Oliq and/or O3 and/or O2–O2 absorption (cf. Fig. S6)

than the non-linear fitting method, possibly due to interfer-

ence of the reference spectra with the DOAS polynomial.

A detailed investigation of this issue is beyond the scope of

this paper, but a clue for the origin of it is visible in Fig. S10,

which shows the differences of the SCDs of NO2, O3 and

O2–O2 and the fit coefficient of H2Oliq between the new v2

OMNO2A results and results obtained with QDOAS in the

linear (filled symbols) and non-linear (open symbols) fitting

approach for the standard OMI fit window 405–465 nm. The

differences are given in arbitrary units which are constructed

as follows. From each difference ”OMNO2A – QDOAS”

the average value is subtracted to ensure the difference lies

around zero. The differences for the QDOAS linear fitting

approach (filled symbols) are then scaled such that the max-

imum values near latitude 20◦ S are around one (but not ex-

actly one, to make sure the curves do not overlap fully). The

same scaling is also applied to the curves for the QDOAS
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Table S2. Numbering of the NO2 slant column retrieval processor OMNO2A versions relevant for the updates described in this paper. See

Sect. S5 for details on the columns.

version reference wavel.

number introduced data range spectra calib. description used in

1.0.0 12 Aug. 2006 — v2006 wcA updated reference spectra introduced —

1.0.5 19 July 2007 01 Oct. 2004 v2006 wcA bug fixes DOMINO v2.0

10 Feb. 2009

1.1.0 21 Jan. 2009 11 Feb. 2009 v2006 wcB OMNO2A’s wavelength calibration introduced DOMINO v2.0

26 Feb. 2009

1.1.1 26 Feb. 2009 27 Feb. 2009 v2006 wcB OMNO2A’s wavelength calibration improved DOMINO v2.0

present

1.2.0 19 Apr. 2010 — v2006 wcB switch from 3 to 5-yr OMI surface albedo database —

1.2.2 16 Mar. 2011 — v2006 wcB switch to updated cloud product OMCLDO2 v1.2.2 —

1.2.3 24 May 2011 01 Oct. 2004 v2006 wcB bug fixes NASA SP v2.1

present

2.0 TBD 01 Oct. 2004 v2014 wcN updates described in this paper DOMINO v3.0

present NASA SP v3 ?
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Fig. S10. Differences of the fit coefficients between the new v2

OMNO2A results and processing with QDOAS using a linear (filled

symbols) and non-linear (open symbols) fitting approach in the

standard OMI fit window for the Pacific Ocean test orbit. Given

are the differences for NO2 (red circles), O3 (blue squares), O2–O2

(magenta triangles) and H2Oliq (black diamonds) in arbitrary units,

with the same scaling for both sets.

non-linear approach (open symbols), so that the differences

for the two fitting approaches can be compared in magnitude.

The structure around latitudes ±20◦ is clearly visible in

all four SCDs for the QDOAS linear approach (filled sym-

bols). For NO2 (red circles) the structure is fully gone at

20◦ N and smaller and negative at 20◦ S when using the non-

linear fit approach, as is also visible in Fig. 11. For both O3

(blue squares) and H2Oliq (black diamonds) the structure is

fully absent when using the non-linear fit approach, while for

O2–O2 (magenta triangles) the magnitude of the structure

is about halved. For higher latitudes, both south and north,

the differences are much smaller for the non-linear fitting ap-

proach in QDOAS than for the linear approach, a further in-

dication that the two fitting approaches behave differently.

The curves for the differences in the fitting coefficients for

H2Ovap and the Ring effect (not shown) do not show clear

latitudinal structures. For the Ring coefficient the two fitting

approaches of QDOAS, Eqs. (S4) and (S5), give the same

difference with OMNO2A, Eq. (S3), showing that the C∗

Ring

in both approaches are essentially the same, while the differ-

ence between QDOAS and OMNO2A is related to the differ-

ent implementation of the Ring effect in the fitting method.

For the H2Ovap the difference with OMNO2A is somewhat

closer to zero for the non-linear than for the linear fitting ap-

proach.

S7 Reprocessed OMI NO2 data of 2005

Sect. 5.4 in the main paper introduces the NO2 data resulting

from a reprocessing of the OMI data of 2005 with the up-

dated OMNO2A processor. This section presents some addi-

tional material based on that data.

Per day the current (case 0) and the updated (case 4) data

of the ground pixels of all OMI full swath orbits with SZA

≤ 75◦ are gridded on a 0.25◦× 0.25◦ grid. From these daily

files, monthly average gridded data files are made for further

analysis. To not be unnecessarily distracted by high slant col-

umn value over the polar regions, related to the viewing ge-

ometry at high latitudes, the maps shown in this section are

limited to the latitude range [−65◦ : +65◦].
Similar to the maps for July 2005 in Figs. 13-14, Fig. S11

shows the monthly average gridded NO2 slant columns of the

updated (case 4) data, and the corresponding difference with

the current (case 0) data, for January 2005, while the RMS
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Fig. S11. Monthly average gridded updated (case 4; top panel) NO2

slant column data for January 2005 and the corresponding differ-

ence with the current (case 0) data (lower panel).

error data for the same month is shown in Fig. S12. The map

of the NO2 difference in Fig. S11 shows a relatively large de-

crease in the NO2 over China. Looking only at cloudy ground

pixels (not shown), the decrease over China is not dissimilar

to other areas, confirming that the tropospheric NO2 column

decreases more over polluted areas than over clean areas, as

mentioned in the main paper.

Fig. S13 shows the monthly average gridded NO2 slant

column errors of the updated (case 4) data, and the corre-

sponding difference with the current (case 0) data, for July

2005. Over the open ocean areas the NO2 error decreases

markedly, related to the improvement of the fit because of

including liquid water and O2–O2 absorption.

Fig. 9 in the main paper shows the H2Oliq fit coefficient

along the OMI orbits for 1 July 2005. The monthly aver-

age H2Oliq fit coefficient is shown in Fig. S14, for all ground

pixel (top panel), for clear-sky pixels only (defined as pixels

with cloud fraction < 0.05; middle panel) and cloudy pixels

only (cloud fraction > 0.80; bottom panel). The correlation

between the H2Oliq fit coefficient for clear-sky pixels and the

chlorophyll concentration, shown in Fig. S15, is evident. The

average of the H2Oliq fit coefficient plotted in Fig. S14 over

all pixels is 1.26 m; while for all cloudy pixels the avearage

is 0.13 m. For clear-sky pixels, the average is 0.79 m over

land and 2.86 m over seas and oceans.

The areas where liquid water absorption plays a role also

show up in the difference between the current (case 0) and

Fig. S12. Monthly average gridded updated (case 4; top panel) RMS

error data for January 2005 and the corresponding difference with

the current (case 0) data (lower panel).

updated (case 4) fit results for the O3 slant column, as can

be seen in Fig. S16, in agreement with what is noted in

Sect. 5.2 of the main paper. To complete the presentation of

the monthly average fit results for July 2005, Fig. S17 shows

a map of the H2Ovap slant column, Fig. S18 of the O2–O2

slant column, and Fig. S19 of the Ring coefficient CRing.
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